Advertisement

International Journal of Theoretical Physics

, Volume 57, Issue 9, pp 2863–2880 | Cite as

Modular Design of Ultra-Efficient Reversible Full Adder-Subtractor in QCA with Power Dissipation Analysis

  • Firdous Ahmad
  • Suhaib Ahmed
  • Vipan Kakkar
  • G. Mohiuddin Bhat
  • Ali Newaz Bahar
  • Shahjahan Wani
Article

Abstract

Quantum-dot Cellular Automata (QCA) is an emerging nanotechnology and a possible alternative to overcome the limitations of complementary metal oxide semiconductor (CMOS) technology. One of the most attractive fields in QCA is the implementation of digital system. As, information loss is a major issue in irreversible digital computation systems. Therefore, reduced heat dissipation is an increasing demand for nano-scale computations. Reversible logic designs are good competitor towards sustainable digital systems. This paper presents two new reversible logic gates viz., 3 × 3-New Reversible Gate (3 × 3-NRG), and Modified Feynman Gate (MFG). The proposed gates are tested by designing an optimal reversible single layer full adder-subtractor circuit (RFAS). Based on the simulation results, it is observed that the proposed RFAS is an efficient arithmetic logic circuit and has reduced area, less circuit complexity and less number of clock delays over existing designs. In addition, a complete propagation path flow of the RFAS is also presented. Meanwhile, the energy dissipation analysis of the proposed RFAS is verified using three separate energy levels (γ = 0.5Ek, γ = 1.0, Ek and γ = 1.5Ek), at T = 2 K in QCAPro tool. It is observed that the proposed RFAS design dissipates less energy compared to the traditional approaches.

Keywords

QCA Reversible gate 3 × 3-NRG Modified Feynman gate Full adder-subtractor Energy estimation Nanotechnology Quantum cells 

Notes

Compliance with Ethical Standards

Competing interests

The authors declare that there is no conflict of interest regarding the publication of this paper.

References

  1. 1.
    Lent, C.S., Tougaw, P.D., Porod, W., Bernstein, G.H.: Quantum cellular automata. Nanotechnology 4, 49 (1993)ADSCrossRefGoogle Scholar
  2. 2.
    Smith, C.G.: Computation without current. Science 284, 274–274 (1999)CrossRefGoogle Scholar
  3. 3.
    Bilal, B., Ahmed, S., Kakkar, V.: Modular adder designs using optimal reversible and fault tolerant gates in field-coupled QCA nanocomputing. Int. J. Theor. Phys. 57(5), 1356–1375 (2018)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bilal, B., Ahmed, S., Kakkar, V.: An insight into beyond CMOS Next generation computing using quantum-dot cellular automata nanotechnology. Int. J. Eng. Manuf. 8(1), 25–37 (2018)Google Scholar
  5. 5.
    Tougaw, P.D., Lent, C.S.: Logical devices implemented using quantum cellular automata. J. Appl. Phys. 75, 1818–1825 (1994)ADSCrossRefGoogle Scholar
  6. 6.
    Frost, S.E., Rodrigues, A.F., Janiszewski, A.W., Rausch, R.T., Kogge, P.M.: Memory in Motion: a Study of Storage Structures in QCA. In: First Workshop on Non-Silicon Computing (2002)Google Scholar
  7. 7.
    Niemier, M.T., Kogge, P.M.: Logic in wire: using quantum dots to implement a microprocessor. In: The 6th IEEE International Conference on Electronics, Circuits and Systems, 1999. Proceedings of ICECS’99, pp. 1211–1215 (1999)Google Scholar
  8. 8.
    Amlani, I., Orlov, A.O., Toth, G., Bernstein, G.H., Lent, C.S., Snider, G.L.: Digital logic gate using quantum-dot cellular automata. Science 284, 289–291 (1999)ADSCrossRefGoogle Scholar
  9. 9.
    Bilal, B., Ahmed, S., Kakkar, V.: Quantum dot cellular automata: a new paradigm for digital design. Int. J. Nanoelectron. Mater. 11(1), 87–98 (2018)Google Scholar
  10. 10.
    Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5, 183–191 (1961)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17, 525–532 (1973)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Bilal, B., Ahmed, S., Kakkar, V.: QCA based efficient Toffoli gate design and implementation for nanotechnology applications. Int. J. Eng. Technol. 9, 84–92 (2017)CrossRefGoogle Scholar
  13. 13.
    Bilal, B., Ahmed, S., Kakkar, V.: Optimal realization of Universality of Peres gate using explicit interaction of cells in quantum dot cellular automata nanotechnology. Int. J. Intell. Syst. Appl. 9, 75 (2017)Google Scholar
  14. 14.
    Ahmad, F.: An optimal design of QCA based 2n: 1/1: 2n multiplexer/demultiplexer and its efficient digital logic realization. Microprocess. Microsyst. 56, 64–75 (2018)CrossRefGoogle Scholar
  15. 15.
    Sen, B., Dutta, M., Goswami, M., Sikdar, B.K.: Modular design of testable reversible ALU by QCA multiplexer with increase in programmability. Microelectron. J. 45, 1522–1532 (2014)CrossRefGoogle Scholar
  16. 16.
    Sen, B., Dutta, M., Some, S., Sikdar, B.K.: Realizing reversible computing in QCA framework resulting in efficient design of testable ALU. ACM J. Emerg. Technol. Comput. Syst. (JETC) 11, 30 (2014)Google Scholar
  17. 17.
    Ma, X., Huang, J., Metra, C., Lombardi, F.: Reversible and testable circuits for molecular QCA design. In: Emerging Nanotechnologies, ed, pp. 157–202. Springer (2008)Google Scholar
  18. 18.
    Mohammadi, Z., Mohammadi, M.: Implementing a one-bit reversible full adder using quantum-dot cellular automata. Quantum Inf. Process. 13, 2127–2147 (2014)ADSMathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Taherkhani, E., Moaiyeri, M.H., Angizi, S.: Design of an ultra-efficient reversible full adder-subtractor in quantum-dot cellular automata. Optik-Int. J. Light Electron. Opt. 142, 557–563 (2017)CrossRefGoogle Scholar
  20. 20.
    Biswas, P.K., Bahar, A.N., Habib, M.A., Nahid, N.M., Bhuiyan, M.M.R.: An efficient design of reversible subtractor in quantum-dot cellular automata. Int. J. Grid Distributed Comput. 10, 13–23 (2017)CrossRefGoogle Scholar
  21. 21.
    Thapliyal, H., Ranganathan, N.: Reversible logic-based concurrently testable latches for molecular QCA. IEEE Trans. Nanotechnol. 9, 62–69 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    Sen, B., Saran, D., Saha, M., Sikdar, B.K.: Synthesis of reversible universal logic around QCA with online testability. In: 2011 International Symposium on Electronic System Design (ISED), pp. 236–241 (2011)Google Scholar
  23. 23.
    Kanth, B.R., Krishna, B.M., Sridhar, M., Swaroop, V.S.: A distinguish between reversible and conventional logic gates. Int. J. Eng. Res. Appl. 2(2), 148–151 (2012)Google Scholar
  24. 24.
    Lombardi, F., Huang, J.: Design and Test of Digital Circuits by Quantum-Dot Cellular Automata. Artech House, Norwood (2007)Google Scholar
  25. 25.
    Timler, J., Lent, C.S.: Power gain and dissipation in quantum-dot cellular automata. J. Appl. Phys. 91, 823–831 (2002)ADSCrossRefGoogle Scholar
  26. 26.
    Ghosh, S., Kaushik, R.: Exploring high-speed low-power hybrid arithmetic units at scaled supply and adaptive clock-stretching. In: Asia and South Pacific Design Automation Conference, 2008. ASPDAC 2008, pp. 635–640 (2008)Google Scholar
  27. 27.
    Akter, R., Islam, N., Waheed, S.: Implementation of reversible logic gate in quantum dot cellular automata. Int. J. Comput. Appl. 109(1), 41–44 (2015)Google Scholar
  28. 28.
    Ahmad, F., Bhat, G.M., Khademolhosseini, H., Azimi, S., Angizi, S., Navi, K.: Towards single layer quantum-dot cellular automata adders based on explicit interaction of cells. J. Comput. Sci. 16, 8–15 (2016)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Chaudhary, A., Chen, D.Z., Hu, X.S., Whitton, K., Niemier, M., Ravichandran, R.: Eliminating wire crossings for molecular quantum-dot cellular automata implementation. In: IEEE/ACM International Conference on Computer-Aided Design, 2005. ICCAD-2005, pp. 565–571 (2005)Google Scholar
  30. 30.
    Shin, S.-H., Jeon, J.-C., Yoo, K.-Y.: Design of wire-crossing technique based on difference of cell state in quantum-dot cellular automata. Int. J. Control Autom. 7, 153–164 (2014)CrossRefGoogle Scholar
  31. 31.
    Devadoss, R., Paul, K., Balakrishnan, M.: Clocking-based coplanar wire crossing scheme for QCA. In: 23rd International Conference on VLSI Design, 2010. VLSID’10, pp. 339–344 (2010)Google Scholar
  32. 32.
    Srivastava, S., Asthana, A., Bhanja, S., Sarkar, S.: QCAPro-an error-power estimation tool for QCA circuit design. In: 2011 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2377–2380 (2011)Google Scholar
  33. 33.
    Srivastava, S., Sarkar, S., Bhanja, S.: Estimation of upper bound of power dissipation in QCA circuits. IEEE Trans. Nanotechnol. 8, 116–127 (2009)ADSCrossRefGoogle Scholar
  34. 34.
    Liu, W., Srivastava, S., Lu, L., O’Neill, M., Swartzlander, E.E.: Are QCA cryptographic circuits resistant to power analysis attack. IEEE Trans. Nanotechnol. 11, 1239–1251 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringShri Mata Vaishno Devi UniversityKatraIndia
  2. 2.Department of Electronics ScienceCluster UniversitySrinagarIndia
  3. 3.Department of Electronics and Communication EngineeringBaba Ghulam Shah Badshah UniversityRajouriIndia
  4. 4.Institute of TechnologyUniversity of KashmirSrinagarIndia
  5. 5.Department of Information and Communication TechnologyMawlana Bhashani Science and Technology UniversityTangailBangladesh

Personalised recommendations