Advertisement

International Journal of Theoretical Physics

, Volume 57, Issue 9, pp 2814–2827 | Cite as

Tunable Optomechanically Induced Transparency and Fano Resonance in Optomechanical System with Levitated Nanosphere

  • Amjad Sohail
  • Yang Zhang
  • Ghulam Bary
  • Chang Shui Yu
Article

Abstract

We analytically investigate the phenomena of optomechanically induced transparency and Fano resonance in optomechanical system with levitated nanosphere trapped inside Fabry-Perot cavity. We report that mechanical oscillator and nanosphere play their independent role in our system. We demonstrate that, an OMIT window exists in the absence of coupling between the nanosphere and the cavity. However the interaction of nanosphere evolves to display fano profile, besides the OMIT window, in the output at the probe frequency. We also report that the Fano profile and the width of the OMIT window can be controlled simultaneously by appropriate system’s parameters. Within the experimental reach, based on our analytical results, we find that the optomechanical system with levitated nanosphere provides great flexibility to tune the OMIT and the Fano resonances by controlling the system’s parameters.

Keywords

Optomechanically induced transparency Fano resonances 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China, under Grant No.11775040 and 11375036, and the Xinghai Scholar Cultivation Plan. Amjad Sohail is supported by China Scholarship Council (CSC) for the Research Fellowship.

References

  1. 1.
    Harris, S.E., Field, J.E., Imamoǧlu, A.: Nonlinear optical processes using electromagnetically induced transparency. Phys. Rev. Lett. 64, 1107 (1990)ADSCrossRefGoogle Scholar
  2. 2.
    Safavi-Naeini, A.H., Mayer Alegre, T.P., Chan, J., Eichenfield, M., Winger, M., Lin, Q., Hill, Q., Chang, D., Painter, O.: Electromagnetically induced transparency and slow light with optomechanics. Nature (London) 472, 69 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    Lambropoulos, P., Zoller, P.: Autoionizing states in strong laser fields. Phys. Rev. A 24, 379 (1981)ADSCrossRefGoogle Scholar
  4. 4.
    Bachau, H., Lambropoulos, P., Shakeshaft, R.: Theory of laser-induced transitions between autoionizing states of He. Phys. Rev. A 34, 4785 (1986)ADSCrossRefGoogle Scholar
  5. 5.
    Rzaznewski, K., Eberly, J.H.: Confluence of bound-free coherences in laser-induced autoionization. Phys. Rev. Lett. 47, 408 (1981)ADSCrossRefGoogle Scholar
  6. 6.
    Deng, Z., Eberly, J.H.: Double-resonance effects in strong-field autoionization. J. Opt. Soc. Am. B 1, 102 (1984)ADSCrossRefGoogle Scholar
  7. 7.
    Ravi, S., Agarwal, G.S.: Absorption spectroscopy of strongly perturbed bound-continuum transitions. Phys. Rev. A 35, 3354 (1987)ADSCrossRefGoogle Scholar
  8. 8.
    Haan, S.L., Agarwal, G.S.: Stability of dressed states against radiative decay in strongly coupled bound-continuum transitions. Phys. Rev. A 35, 4592 (1987)ADSCrossRefGoogle Scholar
  9. 9.
    Knight, P.L., Lauder, M.A., Dalton, B.: Laser-induced continuum structure. J. Phys. Rep. 190, 1–61 (1990)ADSCrossRefGoogle Scholar
  10. 10.
    Agarwal, G.S., Huang, S.: Electromagnetically induced transparency in a mechanical effects of light. Phys. Rev. A 81, 041803 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    Huang, S., Agarwal, G.S.: Electromagnetically induced transparency from the two phonon process in quadratically coupled membrane. Phys. Rev. A 83, 023823 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    Safavi-Naeini, A.H., Mayer Alegre, T.P., Winger, M., Painter, O.: Optomechanics in an ultrahigh-Q two-dimensional photonic crystal cavity. Appl. Phys. Lett. 97, 181106 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    Lin, C.D., Chu, W.C.: Controlling atomic line shapes. Science 340, 694 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    Ott, C. et al.: Lorentz meets Fano in spectral line shapes: a universal phase and its laser control. Science 340, 716 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    Miroshnickenko, A.E., Flach, S., Kivshar, Y.S.: Fano resonances in nanoscale structures. Rev. Mod. Phys. 82, 2257 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    Fano, U: Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 78, 1241866 (1961)Google Scholar
  17. 17.
    Xiao, S et al.: Talking through the continuum: New manifestations of Fano-Resonance phenomenology realized with mesoscopic nanostructures. Phys. 61, 348 (2013)zbMATHGoogle Scholar
  18. 18.
    Verellen, N., Sonnefraud, Y., Sobhani, H., Hao, F., Moshchalkov, V.V., Van Dorpe, P., Nordlander, P., Maier, S.A.: Fano resonances in individual coherent plasmonic nanocavities. Nano Lett. 09, 1663 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    Ye, J., Wen, F., Sobhani, H., Lassiter, J.B., Van Dorpe, P., Nordlander, P., Halas, N.J.: Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS. Nano Lett. 12, 1660 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    Agarwal, G.S.: Quantum Optics. Cambridge University Press, Cambridge (2013)zbMATHGoogle Scholar
  21. 21.
    Qu, K, Agarwal, G.S.: Fano resonances and their control in optomechanics. Phys. Rev. A 87, 063813 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    Ali Abbassi, M., Mehrany, K.: The impact of Fano resonance on enhancing the cooling of a levitated nanosphere in the resolved sideband regime. arXiv:1707.05823v1
  23. 23.
    Huang, S: Double electromagnetically induced transparency and narrowing of probe absorption in a ring cavity with nanomechanical mirrors. J. Phys. B: At. Mol. Opt. Phys. 47, 055504 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    Sohail, A., Zhang, Y., Usman, M., Yu, C.-S.: Controllable optomechanically induced transparency in coupled optomechanical systems. Eur. Phys. J. D 71, 103 (2017)ADSCrossRefGoogle Scholar
  25. 25.
    Sohail, A., Zhang, Y., Zhang, J, Yu, C.-S.: Optomechanically induced transparency in multi-cavity optomechanical system with and without one two-level atom. Sci. Rep. 6, 28830 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    Hammerer, K., Srensen, A.S., Polzik, E.S.: Quantum interface between light and atomic ensembles. Rev. Mod. Phys. 82, 1041 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    Islam R.U., Akram, M. , Saif, F.J.: Engineering maximally entangled N-photon NOON field states using an atom interferometer based on Bragg regime cavity QED. Phys. B: At. Mol. Opt. Phys. 40, 1359 (2007)ADSCrossRefGoogle Scholar
  28. 28.
    Ian, H., Gong, Z.R., Liu, Y.X., Sun, C.P., Nori, F.: Phys. Rev. A 78, 013824 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    Brennecke, F., Ritter, S., Donner, T., Esslinger, T.: Science 322, 235 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    Ritsch, H. et al.: Cavity optomechanics with a Bose-Einstein condensate. Rev. Mod. Phys. 85, 553 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    Tian, L., Zoller, P.: Coupled Ion-Nanomechanical systems. Phys. Rev. Lett. 93, 266403 (2004)ADSCrossRefGoogle Scholar
  32. 32.
    Yasir, K.A., Ayub, M., Saif, F.: Exponential localization of moving-end mirror in optomechanical system. J. Mod. Opt. 61, 1318 (2014)ADSCrossRefGoogle Scholar
  33. 33.
    Han, Y., Cheng, J., Zhou, L.: Electromagnetically induced transparency in a cavity optomechanical system with an atomic medium. J. Phys. B 44, 165505 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    Akram, M.J., Ghafoor, F., Saif, F.: Electromagnetically induced transparency and tunable fano resonances in hybrid optomechanics. J. Phys. B 48, 065502 (2015)ADSCrossRefGoogle Scholar
  35. 35.
    Pirkkalainen, J.M. et al.: Nat. Comm. 6, 6981 (2014)CrossRefGoogle Scholar
  36. 36.
    Wang, H. et al.: Phys. Rev. A 90, 023817 (2014)ADSCrossRefGoogle Scholar
  37. 37.
    Akram, M.J., Ghafoor, F., Khan, M.M., Saif, F.: Control of Fano resonances and slow light using Bose-Einstein condensates in a nanocavity. Phys. Rev. A 95, 023810 (2017)ADSCrossRefGoogle Scholar
  38. 38.
    Yasir, K.A., Liu, W.-M.: Controlled electromagnetically induced transparency and fano resonances in hybrid BEC-Optomechanics. Sci. Rep. 6, 22651 (2016)ADSCrossRefGoogle Scholar
  39. 39.
    Kiesel, N., Blaser, F., Deli, U., Grass, D., Kaltenbaek, R., Aspelmeyer, M.: Cavity cooling of an optically levitated submicron particle. Proc. Nat. Acad. Sci. 110, 14180 (2013)ADSCrossRefGoogle Scholar
  40. 40.
    Millen, J., Fonseca, P.Z.G., Mavrogordatos, T., Monteiro, T.S., Barker, P.F.: Cavity Cooling a single charged levitated nanosphere. Phys. Rev. Lett. 114, 123602 (2015)ADSCrossRefGoogle Scholar
  41. 41.
    Chang, D.E., Regal, C.A., Papp, S.B., Wilson, D.J., Ye, J., Painter, O., Kimble, H.J., Zoller P.: Cavity optomechanics using an optically levitated nanosphere. Proc. Nat. Acad. Sci. 107, 1005 (2010)ADSCrossRefGoogle Scholar
  42. 42.
    Romero-Isart, O., Pflanzer, A.C., Juan, M.L., Quidant, R., Kiesel, N., Aspelmeyer, M., Cirac, J.I.: Optically levitating dielectrics in the quantum regime: theory and protocols. Phys. Rev. A 83, 013803 (2011)ADSCrossRefGoogle Scholar
  43. 43.
    Kaltenbaek, R., Hechenblaikner, G., Kiesel, N., RomeroIsart, O., Schwab, K., Johann, U., Aspelmeyer, M.: Macroscopic quantum resonators. Exp. Astron. 34, 123 (2012)ADSCrossRefGoogle Scholar
  44. 44.
    Arvanitaki, A., Geraci, A.A.: Detecting high-frequency gravitational waves with optically levitated sensors. Phys. Rev. Lett. 110, 071105 (2013)ADSCrossRefGoogle Scholar
  45. 45.
    Monteiro, T., Millen, J., Pender, G., Marquardt, F., Chang, D., Barker, P.: Dynamics of levitated nanospheres: towards the strong coupling regime. New J. Phys. 15, 015001 (2013)ADSCrossRefGoogle Scholar
  46. 46.
    Zhang, J.Q., Li, Y., Feng, M., Xu, Y.: Precision measurement of electrical charge with optomechanically induced transparency. Phys. Rev. A 86, 053806 (2012)ADSCrossRefGoogle Scholar
  47. 47.
    Hensinger, W.K., Utami, D.W., Goan, H.S., Schwab, K., Monroe, C., Milburn, G.J.: ion trap transducers for quantum electromechanical oscillators. Phys. Rev. A 72(R), 041405 (2005)ADSCrossRefGoogle Scholar
  48. 48.
    Nie, W., Chen, A., Lan, Y.: Optical-response properties in levitated optomechanical systems beyond the low-excitation limit. Phys. Rev. A 93, 023841 (2016)ADSCrossRefGoogle Scholar
  49. 49.
    Walls, D.F., Milburn, G.J.: Quantum Optics. Springer, Berlin (1994)CrossRefzbMATHGoogle Scholar
  50. 50.
    Gröblacher, S., Hammerer, K., Vanner, M., Aspelmeyer, M.: Observation of strong coupling between a micromechanical resonator and an optical cavity field. Nature (London) 460, 724 (2009)ADSCrossRefGoogle Scholar
  51. 51.
    Nie, W., Lan, Y., Li, Y.: Zhu S.:Dynamics of a levitated nanosphere by optomechanical coupling and Casimir interaction. Phys. Rev. A 88, 063849 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Amjad Sohail
    • 1
  • Yang Zhang
    • 2
  • Ghulam Bary
    • 1
  • Chang Shui Yu
    • 1
  1. 1.School of Physics and Optoelectronic TechnologyDalian University of TechnologyDalianChina
  2. 2.Dapartment of PhysicsShanxi Datong UniversityDatongChina

Personalised recommendations