Advertisement

International Journal of Theoretical Physics

, Volume 57, Issue 9, pp 2787–2801 | Cite as

Influence of an External Classical Field on the Interaction Between a Field and an Atom in Presence of Intrinsic Damping

  • A.-S. F. Obada
  • E. M. Khalil
  • M. M. A. Ahmed
  • M. M. Y. Elmalky
Article
  • 124 Downloads

Abstract

The effect of intrinsic damping on the interaction between a two-level atom and a multi-photon cavity field in the presence of an external classical field is studied. Under certain conditions and use of a transformation, the system is transformed to a generalized Jaynes Cummings model, with the influence of classical field included in the detuning parameter. The temporal evolution of some statistical aspects such as, the atomic inversion, the squeezing phenomena and linear entropy are obtained. In addition, we present the effects of the intrinsic damping and detuning parameters on the above mentioned quantities, for one and two photons. The entropy is used as a measure of the degree of entanglement, and consequently discussed.

Keywords

External classical field Atomic inversion Damping Linear entropy Variance squeezing Entropy squeezing 

References

  1. 1.
    Milburn, G.J.: Phys. Rev. A 44, 5401 (1991)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Jaynes, E.T., Cummings, F.W.: Proc. IEEE 51, 89 (1963)CrossRefGoogle Scholar
  3. 3.
    Moya-Cessa, H., Bužek, V., Kim, M.S., Knight, P.L.: Phys. Rev. A 48, 3900 (1993)ADSCrossRefGoogle Scholar
  4. 4.
    Kuang, L.M., Chen, X., Chen, G.H., Ge, M.L.: Phys. Rev. A 56, 3139 (1997)ADSCrossRefGoogle Scholar
  5. 5.
    Obada, A.S., Hessian, H.A.: JOSA B 21, 1535 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    Xue-Qun, Y., Bin, S., Jian, Z.: Commun. Theor. Phys. 48, 63 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    Abdel-Aty, M.: Phys. Lett. A 372, 3719 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    Mohamed, A.B., Metwally, N.: Ann. Phys. 381, 137 (2017)ADSCrossRefGoogle Scholar
  9. 9.
    Mohamed, A.B.A.: Eur. Phys. J. D 71(10), 261 (2017)ADSCrossRefGoogle Scholar
  10. 10.
    Alqannas, H.S., Khalil, E.: Phys. A 489, 1 (2018)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Anwar, S.J., Ramzan, M., Khan, M.K.: Quantum Inf. Process. 16(6), 142 (2017)ADSCrossRefGoogle Scholar
  12. 12.
    Abdel-Khalek, S., Zidan, N., Abdel-Aty, M.: Phys. E 44, 6 (2011)CrossRefGoogle Scholar
  13. 13.
    Furuichi, S., Ohya, M.: Lett. Math. Phys. 49, 279 (1999)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Solano, E., Agarwal, G.S., Walther, H.: Phys. Rev. Lett. 90, 027903, 4p (2003)ADSCrossRefGoogle Scholar
  15. 15.
    Mohamed, A.B.A., Abdalla, M.S., Obada, A.S.F.: Eur. Phys. J. D 71(9), 223 (2017)ADSCrossRefGoogle Scholar
  16. 16.
    Abdalla, M.S., Khalil, E., Obada, A.S.: Ann. Phys. 326, 2486 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    Khalil, E.: Int. J. Theor. Phys. 52, 1122 (2013)CrossRefGoogle Scholar
  18. 18.
    Moya-Cessa, H.: Phys. Rep. 432, 1 (2006)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Shore, B.W., Knight, P.L.: J. Mod. Opt. 40, 1195 (1993)ADSCrossRefGoogle Scholar
  20. 20.
    Obada, A.S.F., Hessian, H., Mohamed, A.B.: J. Phys. B 41, 135503, 7pp (2008)Google Scholar
  21. 21.
    Abdalla, M.S., Khalil, E., Obada, A.S.: Ann. Phys. 322, 2554 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    Abdalla, M.S., Obada, A.S., Mohamed, A.B., Khalil, E.: Int. J. Theor. Phys. 53, 1325 (2014)CrossRefGoogle Scholar
  23. 23.
    Sánchez-Ruiz, J.: Phys. Lett. A 201, 125 (1995)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Fang, M., Zhou, P., Swain, S.: J. Mod. Opt. 47, 1043 (2000)ADSCrossRefGoogle Scholar
  25. 25.
    Zurek, W.H., Habib, S., Paz, J.P.: Phys. Rev. Lett. 70, 1187 (1993)ADSCrossRefGoogle Scholar
  26. 26.
    Abdel-Aty, M., Abdalla, M.S., Obada, A.S.F.: J Phys. A 34, 9129 (2001)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Abdel-Aty, M., Abdalla, M.S., Obada, A.S.F.: J. Opt. B 4, 134 (2002)ADSCrossRefGoogle Scholar
  28. 28.
    Phoenix, S., Knight, P.: Ann. Phys. 186, 381 (1988)ADSCrossRefGoogle Scholar
  29. 29.
    Phoenix, S.J.D., Knight, P.L.: Phys. Rev. A 44, 6023 (1991)ADSCrossRefGoogle Scholar
  30. 30.
    Von Neumann, J.: Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton (1955)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Mathematics Department, Faculty of ScienceAl-Azhar UniversityCairoEgypt
  2. 2.Mathematics Department, Faculty of ScienceTaif UniversityTaifSaudi Arabia

Personalised recommendations