Advertisement

International Journal of Theoretical Physics

, Volume 57, Issue 9, pp 2755–2766 | Cite as

Four-State Continuous-Variable Quantum Key Distribution with Photon Subtraction

  • Fei Li
  • Yijun Wang
  • Qin Liao
  • Ying Guo
Article

Abstract

Four-state continuous-variable quantum key distribution (CVQKD) is one of the discretely modulated CVQKD which generates four nonorthogonal coherent states and exploits the sign of the measured quadrature of each state to encode information rather than uses the quadrature \(\hat {x}\) or \(\hat {p}\) itself. It has been proven that four-state CVQKD is more suitable than Gaussian modulated CVQKD in terms of transmission distance. In this paper, we propose an improved four-state CVQKD using an non-Gaussian operation, photon subtraction. A suitable photon-subtraction operation can be exploited to improve the maximal transmission of CVQKD in point-to-point quantum communication since it provides a method to enhance the performance of entanglement-based (EB) CVQKD. Photon subtraction not only can lengthen the maximal transmission distance by increasing the signal-to-noise rate but also can be easily implemented with existing technologies. Security analysis shows that the proposed scheme can lengthen the maximum transmission distance. Furthermore, by taking finite-size effect into account we obtain a tighter bound of the secure distance, which is more practical than that obtained in the asymptotic limit.

Keywords

Quantum key distribution Nonorthogonal coherent states Photon subtraction 

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 61379153, No. 61572529).

References

  1. 1.
    Bennett, C.H., Brassard, G.: In: Proc. IEEE International conference on computers systems and signal processing, pp. 175–179 (1984)Google Scholar
  2. 2.
    Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Rev. Mod. Phys. 74, 145 (2002).  https://doi.org/10.1103/RevModPhys.74.145. http://link.aps.org/doi/10.1103/RevModPhys.74.145 ADSCrossRefGoogle Scholar
  3. 3.
    Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dušek, M., Lütkenhaus, N., Peev, M.: Rev. Mod. Phys. 81, 1301 (2009).  https://doi.org/10.1103/RevModPhys.81.1301. http://link.aps.org/doi/10.1103/RevModPhys.81.1301 ADSCrossRefGoogle Scholar
  4. 4.
    Wootters, W.K., Zurek, W.H.: Nature 299, 802 (1982)ADSCrossRefGoogle Scholar
  5. 5.
  6. 6.
    Pirandola, S., Ottaviani, C., Spedalieri, G., Weedbrook, C., Braunstein, S.L., Lloyd, S., Gehring, T., Jacobsen, C.S., Andersen, U.L.: Nat. Photon. 9(6), 397 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    Ma, X.C., Sun, S.H., Jiang, M.S., Gui, M., Liang, L.M.: Phys. Rev. A 89, 042335 (2014).  https://doi.org/10.1103/PhysRevA.89.042335. http://link.aps.org/doi/10.1103/PhysRevA.89.042335 ADSCrossRefGoogle Scholar
  8. 8.
    Lance, A.M., Symul, T., Sharma, V., Weedbrook, C., Ralph, T.C., Lam, P.K.: Phys. Rev. Lett. 95, 180503 (2005).  https://doi.org/10.1103/PhysRevLett.95.180503. http://link.aps.org/doi/10.1103/PhysRevLett.95.180503 ADSCrossRefGoogle Scholar
  9. 9.
    Chen, D.X., Zhang, P., Li, H.R., Gao, H., Li, F.L.: Quantum Inf. Process 15(2), 881 (2016)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
  11. 11.
    Zhang, H., Fang, J., He, G.: Phys. Rev. A 86(2), 022338 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    Leverrier, A., Grangier, P.: Phys. Rev. A 83(4), 042312 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    Leverrier, A., Grangier, P.: Phys. Rev. Lett. 102(18), 180504 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    Weedbrook, C., Lance, A.M., Bowen, W.P., Symul, T., Ralph, T.C., Lam, P.K.: Phys. Rev. Lett. 93, 170504 (2004).  https://doi.org/10.1103/PhysRevLett.93.170504. http://link.aps.org/doi/10.1103/PhysRevLett.93.170504 ADSCrossRefGoogle Scholar
  15. 15.
  16. 16.
  17. 17.
  18. 18.
    Furrer, F., Franz, T., Berta, M., Leverrier, A., Scholz, V.B., Tomamichel, M., Werner, R.F.: Phys. Rev. Lett. 109, 100502 (2012).  https://doi.org/10.1103/PhysRevLett.109.100502. http://link.aps.org/doi/10.1103/PhysRevLett.109.100502 ADSCrossRefGoogle Scholar
  19. 19.
    Leverrier, A., García-Patrón, R., Renner, R., Cerf, N.J.: Phys. Rev. Lett. 110, 030502 (2013).  https://doi.org/10.1103/PhysRevLett.110.030502. http://link.aps.org/doi/10.1103/PhysRevLett.110.030502 ADSCrossRefGoogle Scholar
  20. 20.
    Leverrier, A.: Phys. Rev. Lett. 114(7), 070501 (2015)ADSCrossRefGoogle Scholar
  21. 21.
  22. 22.
    Li, Z., Zhang, Y.C., Xu, F., Peng, X., Guo, H.: Phys. Rev. A 89, 052301 (2014).  https://doi.org/10.1103/PhysRevA.89.052301. http://link.aps.org/doi/10.1103/PhysRevA.89.052301 ADSCrossRefGoogle Scholar
  23. 23.
    Guo, Y., Liao, Q., Wang, Y., Huang, D., Huang, P., Zeng, G.: Performance improvement of continuous-variable quantum key distribution with an entangled source in the middle via photon subtraction. Phys. Rev. A 95, 032304 (2017).  https://doi.org/10.1103/PhysRevA.95.032304 ADSCrossRefGoogle Scholar
  24. 24.
    Li, Z., Zhang, Y., Wang, X., Xu, B., Peng, X., Guo, H.: Phys. Rev. A 93, 012310 (2016).  https://doi.org/10.1103/PhysRevA.93.012310. http://link.aps.org/doi/10.1103/PhysRevA.93.012310 ADSCrossRefGoogle Scholar
  25. 25.
  26. 26.
    Adhikari, S., Majumdar, A.S., Nayak, N.: Phys. Rev. A 77, 012337 (2008).  https://doi.org/10.1103/PhysRevA.77.012337. http://link.aps.org/doi/10.1103/PhysRevA.77.012337 ADSCrossRefGoogle Scholar
  27. 27.
    Usenko, V., Filip, R.: Trusted noise in continuous-variable quantum key distribution: a threat and a defense. Entropy 18(1), 20–27 (2016).  https://doi.org/10.3390/e18010020 ADSCrossRefGoogle Scholar
  28. 28.
  29. 29.
    García-patrón, R.: Universite Libre De Bruxelles (2007)Google Scholar
  30. 30.
    Pirandola, S., Braunstein, S.L., Lloyd, S.: Phys. Rev. Lett. 101, 200504 (2008).  https://doi.org/10.1103/PhysRevLett.101.200504. http://link.aps.org/doi/10.1103/PhysRevLett.101.200504 ADSCrossRefGoogle Scholar
  31. 31.
    Eisaman, M.D., Fan, J., Migdall, A., Polyakov, S.V.: Rev. Sci. Instrum. 82(7), 071101 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    Navascués, M., Grosshans, F., Acín, A.: Phys. Rev. Lett. 97, 190502 (2006).  https://doi.org/10.1103/PhysRevLett.97.190502. http://link.aps.org/doi/10.1103/PhysRevLett.97.190502 ADSCrossRefGoogle Scholar
  33. 33.
  34. 34.
    Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  35. 35.
    Leverrier, A., Grosshans, F., Grangier, P.: Phys. Rev. A 81(6), 062343 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Information Science EngineeringCentral South UniversityChangshaChina

Personalised recommendations