Advertisement

International Journal of Theoretical Physics

, Volume 57, Issue 9, pp 2665–2675 | Cite as

A Teleportation Protocol For Transfer of Arbitrary GHZ-states Using Intermediate Nodes

  • Binayak S. Choudhury
  • Soumen Samanta
Article

Abstract

Originally the teleportation protocols were executed through quantum channels shared between the sender and the receiver. In view of the almost unavoidable environmental noise and the fact that entangled states are usually fragile, long distance teleportation becomes problematic. For that purpose intermediate nodes connected in chains through entanglements are introduced and the teleportation is performed in parts across every pair of adjacent nodes. In this paper we show that we can perfectly teleport an arbitrary GHZ-state through a single protocol involving multiple intermediate nodes. The advantages of this protocol are discussed.

Keywords

Quantum teleportation GHZ-states Two-qubit Bell-state von Neumann measurement Delay Efficiency 

Notes

Acknowledgements

This work is supported by the University Grants Commission of India. The valuable suggestions of the referee are gratefully acknowledged.

References

  1. 1.
    Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)ADSMathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Zhang, Z.-H., Shu, L., Mo, Z.-W.: Quantum teleportation and superdense coding through the composite W-Bell channel. Quantum Inf. Process. 12, 1957–1967 (2013).  https://doi.org/10.1007/s11128-012-0504-6 ADSMathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Nie, Y.-Y., Li, Y.-H., Liu, J.-C., Sang, M.-H.: Perfect teleportation of an arbitrary Three-Qubit state by using W-Class states. Int. J. Theor. Phys. 50, 3225–3229 (2011).  https://doi.org/10.1007/s10773-011-0825-8 MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Li, K., Kong, F.-Z., Yang, M., Ozaydin, F., Yang, Q., Cao, Z.-L.: Generating multi-photon W-like states for perfect quantum teleportation and superdense coding. Quantum Inf. Process. 15, 3137–3150 (2016).  https://doi.org/10.1007/s11128-016-1332-x ADSMathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Zhang, B., Liu, X.-T., Wang, J., Tang, C.-J.: Quantum Teleportation of an Arbitrary N-qubit State via GHZ-like States. Int. J. Theor. Phys. 55, 1601–1611 (2016).  https://doi.org/10.1007/s10773-015-2798-5 CrossRefMATHGoogle Scholar
  6. 6.
    Banik, M., Gazi, M.R.: Classical communication and non-classical fidelity of quantum teleportation. Quantum Inf. Process. 12, 3607–3615 (2013).  https://doi.org/10.1007/s11128-013-0619-4 ADSMathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Shukla, C., Banerjee, A., Pathak, A.: Bidirectional controlled teleportation by using 5-Qubit states: a generalized view. Int. J. Theor. Phys. 52, 3790–3796 (2013).  https://doi.org/10.1007/s10773-013-1684-2 CrossRefGoogle Scholar
  8. 8.
    Li, Y.-H., Jin, X.-M.: Bidirectional controlled teleportation by using nine-qubit entangled state in noisy environments. Quantum Inf. Process. 15, 929–945 (2016).  https://doi.org/10.1007/s11128-015-1194-7 ADSMathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Agrawal, P., Pati, A.: Perfect teleportation and superdense coding with W states. Phys. Rev. A 74(6), 062320 (2006).  https://doi.org/10.1103/PhysRevA.74.062320 ADSCrossRefGoogle Scholar
  10. 10.
    Muralidharan, S., Panigrahi, P.K.: Perfect teleportation, quantum-state sharing and superdense coding through a genuinely entangled five-qubit state. Phys. Rev. A 77, 032321 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    Zhu, P.H.: Perfect Teleportation of an Arbitrary Two-Qubit State via GHZ-like States. Int. J. Theor. Phys. 53, 4095–4097 (2014)CrossRefMATHGoogle Scholar
  12. 12.
    Saha, D., Panigrahi, P.K.: N-qubit quantum teleportation, information splitting and superdense coding through the composite GHZ-bell channel. Quantum Inf. Process. 11, 615–628 (2012)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Liu, J.-M., Weng, B.: Approximate teleportation of an unknown atomic state in the two-photon Jaynes-Cummings model. Phys. A: Stat. Mech. Appl. 367, 215–219 (2006)CrossRefGoogle Scholar
  14. 14.
    Changyong, C., Shaohua, L.: Approximate and conditional teleportation of an unknown atomic-Entangled State Without Bell-State Measurement. Communications in Theoretical Physics; ISSN 0253-6102; v. 47(2); p. 253–256Google Scholar
  15. 15.
    Zheng, S.B.: Scheme for approximate conditional teleportation of an unknown atomic state without the Bell-state measurement. Phys. Rev. A 69, 064302 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    Yu, L.-Z., Wu, T.: Probabilistic teleportation of three-qubit entangled State via five-qubit cluster State. Int. J. Theor. Phys. 52, 1461–1465 (2013).  https://doi.org/10.1007/s10773-012-1463-5 MathSciNetCrossRefGoogle Scholar
  17. 17.
    Agrawal, P., Pati, A.K.: Probabilistic quantum teleportation. Phys. Lett. A 305, 12–17 (2002)ADSMathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Dai, H.Y., Chen, P.X., Li, C.Z.: Probabilistic teleportation of an arbitrary two particle state by a partially entangled three-particle GHZ state and W state. Commun. 231(1-6), 281–287 (2004).  https://doi.org/10.1016/j.optcom.2003.11.074 ADSGoogle Scholar
  19. 19.
    Yan, F., Yan, T.: Probabilistic teleportation via a non-maximally entangled GHZ state. Chin. Sci. Bull. 55, 902–906 (2010)CrossRefGoogle Scholar
  20. 20.
    Karlsson, A., Bourennane, M.: Quantum teleportation using three-particle entanglement. Phys. Rev. A 58(6), 4394–4400 (1998)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Kim, Y.H., Kulik, S.P., Shih, Y.: Quantum teleportation of a polarization state with a complete Bell-state measurement. Phys. Rev. Lett. 86, 1370 (2001)ADSCrossRefGoogle Scholar
  22. 22.
    Zha, X.-W., Zou, Z.-C., Qi, J.-X., Song, H.-Y.: Bidirectional quantum controlled teleportation via five-qubit cluster state. Int. J. Theor. Phys. 52, 1740–1744 (2013)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Cola, M.M., Paris, M.G.A.: Teleportation of bipartite states using a single entangled pair. Phys. Lett. A 337, 10–16 (2005)ADSMathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Rigolin, G.: Quantum teleportation of an arbitrary two qubit state and its relation to multipartite entanglement. Physics 71(3), 309–315 (2004).  https://doi.org/10.1103/PhysRevA.71.032303 Google Scholar
  25. 25.
    Nandi, K., Mazumdar, C.: Quantum teleportation of a two qubit State using GHZ-like State. Int. J. Theor. Phys. 53, 1322–1324 (2014)CrossRefMATHGoogle Scholar
  26. 26.
    Li, Y.H., Liu, J.C., Nie, Y.Y.: Quantum teleportation and quantum information splitting by using a genuinely entangled six-qubit state. Int. J. Theor. Phys. 49(49), 2592–2599 (2010).  https://doi.org/10.1007/s10773-010-0450-y MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Liu, J.-C., Li, Y.-H., Nie, Y.-Y.: Controlled teleportation of an arbitrary two-particle pure or mixed State by using a five-qubit cluster State. Int. J. Theor. Phys. 49, 1976–1984 (2010).  https://doi.org/10.1007/s10773-010-0383-5 MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Li, Y.H., Nie, L.P.: Bidirectional controlled teleportation by using a five-qubit composite GHZ-bell state. Int. J. Theor. Phys. 52, 1630–1634 (2013)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Chen, Y.: Bidirectional quantum controlled teleportation by using a genuine six-qubit entangled state. Int. J. Theor. Phys. 54, 269–272 (2015)CrossRefMATHGoogle Scholar
  30. 30.
    Yang, Y.Q., Zha, X.W., Yu, Y.: Asymmetric Bidirectional Controlled Teleportation via Seven-qubit Cluster State. Int. J. Theor. Phys. 55, 4197–4204 (2016)CrossRefMATHGoogle Scholar
  31. 31.
    Li, Y.-H., Nie, L.-P., Li, X.-L., Sang, M.-H.: Asymmetric bidirectional controlled teleportation by using six-qubit cluster state. Int. J. Theor. Phys. 55, 3008–3016 (2016)CrossRefMATHGoogle Scholar
  32. 32.
    Sang, M.-H., Dai, H.-L.: Controlled teleportation of an arbitrary three-qubit state by using two four-qubit entangled states. Int. J. Theor. Phys. 53, 1930–1934 (2014).  https://doi.org/10.1007/s10773-014-1997-9 CrossRefMATHGoogle Scholar
  33. 33.
    Perez-Leija, A., Keil, R., Moya-Cessa, H., Szameit, A., Christodoulides, D.N.: Perfect transfer of path-entangled photons in Jx photonic lattices. Phys. Rev. A 87, 022303 (2013)ADSCrossRefGoogle Scholar
  34. 34.
    Azuma, K., Kato, G.: Aggregating quantum repeaters for the quantum internet. Phys. Rev. A 96, 032332 (2017)ADSCrossRefGoogle Scholar
  35. 35.
    Briegel, H.-J., Dr, W., Cirac, J.I., Zoller, P.: Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932 (1998)ADSCrossRefGoogle Scholar
  36. 36.
    Dr, W., Briegel, H.-J., Cirac, J.I., Zoller, P.: Quantum repeaters based on entanglement purification. Phys. Rev. A 59, 169 (1999)ADSCrossRefGoogle Scholar
  37. 37.
    Zou, Z.-Z., Yu, X.-T., Gong, Y.-X., Zhang, Z.-C.: Multihop teleportation of two-qubit state via the composite GHZ-bell channel. Phys. Lett. A 381, 76–81 (2017)ADSCrossRefMATHGoogle Scholar
  38. 38.
    Wang, K., Yu, X.T., Lu, S.L., Gong, Y.X.: Quantum wireless multihop communication based on arbitrary Bell pairs and teleportation. Phys. Rev. A 89(2), 022329 (2014)ADSCrossRefGoogle Scholar
  39. 39.
    Zhang, H.T., Xiong, P.Y., Zhang, Z.C.: Multi-hop teleportation based on W-state and EPR pairs. Chin. Phys. B 25(5), 050305 (2016)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Xiong, P.Y., Yu, X.T., Zhang, Z.C.: Multiple teleportation via partially entangled GHZ-state. Front. Phys. 11(8), 110303 (2016)CrossRefGoogle Scholar
  41. 41.
    Ding, D., Yan, F., Gao, T.: Preparation of km-photon concatenated GHZ states for observing distinct quantum effects at macroscopic scale (2013). arXiv:1307.6826v1 [quant-ph]
  42. 42.
    Wang, Q.-L., Zhang, K.-J.: Security analysis and improvement of the dining cryptographer problem-based anonymous quantum communication via non-maximally entanglement state analysis. Int. J. Theor. Phys. 54, 106–115 (2015).  https://doi.org/10.1007/s10773-014-2206-6 MathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    Qin, S.-J.: Reexamining the security of controlled quantum secure direct communication by using four particle cluster states. Int. J. Theor. Phys. 51, 2714–2718 (2012).  https://doi.org/10.1007/s10773-012-1181-z CrossRefMATHGoogle Scholar
  44. 44.
    Li, Z.-Z., Xu, G., Chen, X.-B., Sun, X., Yang, Y.-X.: Multi-user Quantum wireless network communication based on Multi-Qubit GHZ state. IEEE Commun. Lett., vol. 20, no. 12, 2470Google Scholar
  45. 45.
    Yuan, H., Liu, Y.M., Zhang, W., Zhang, Z.J.: Optimizing resource consumption, operation complexity and efficiency in quantum-state sharing. J. Phys. B: At. Mol. Opt. Phys. 41, 145506 (2008)ADSCrossRefGoogle Scholar
  46. 46.
    Shi, R., Huang, L., Yang, W.: Multi-party quantum state sharing of an arbitrary two-qubit state with Bell states. Quantum Inf. Process. 10, 231–239 (2011)MathSciNetCrossRefMATHGoogle Scholar
  47. 47.
    Jiang, M., Wu, R.-B., Li, H., Zhang, Z.-K.: A centralized quantum switch network based on probabilistic channels. Quantum Inf. Process. 12, 395–410 (2013).  https://doi.org/10.1007/s11128-012-0384-9 ADSMathSciNetCrossRefMATHGoogle Scholar
  48. 48.
    Chen, X.-B., Wen, Q.-Y.: Quantum circuits for probabilistic entanglement teleportation entanglement teleportation via a partially entangled pair. Int. J. Quantum Inf. 5, 717–728 (2007)CrossRefMATHGoogle Scholar
  49. 49.
    Lanyon, B.P., et al.: Simplifying quantum logic using higher-dimensional Hilbert spaces. Nat. Phys. 5, 134–140 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsIndian Institute of Engineering Science and Technology, ShibpurHowrahIndia

Personalised recommendations