Advertisement

International Journal of Theoretical Physics

, Volume 57, Issue 9, pp 2585–2597 | Cite as

Thermal Entanglement Between Atoms in the Four-Cavity Linear Chain Coupled by Single-Mode Fibers

  • Jun-Biao Wang
  • Guo-Feng Zhang
Article
  • 79 Downloads

Abstract

Natural thermal entanglement between atoms of a linear arranged four coupled cavities system is studied. The results show that there is no thermal pairwise entanglement between atoms if atom-field interaction strength f or fiber-cavity coupling constant J equals to zero, both f and J can induce thermal pairwise entanglement in a certain range. Numerical simulations show that the nearest neighbor concurrence CAB is always greater than alternate concurrence CAC in the same condition. In addition, the effect of temperature T on the entanglement of alternate qubits is much stronger than the nearest neighbor qubits.

Keywords

Quantum thermal entanglement Concurrence Coupled cavities system 

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 11574022).

References

  1. 1.
    Bennett, C.H., DiVincenzo, D.P.: Nature 404, 247 (2000)ADSCrossRefGoogle Scholar
  2. 2.
    Braunstein, S.L., Kimble, H.J.: Phys. Rev. A 61, 042302 (2000)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Phys. Rev. Lett. 70, 1895 (1993)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Ekert, A.K.: Phys. Rev. Lett. 67, 661 (1991)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Zhang, G.-F., Li, S.-S.: Phys. Rev. A 72, 034302 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    Arnesen, M.C., Bose, S., Vedral, V.: Phys. Rev. Lett. 87, 017901 (2001)ADSCrossRefGoogle Scholar
  7. 7.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  8. 8.
    Quiroga, L., Rodríguez, F.J., Ramírez, M.E., París, R.: Phys. Rev. A 75, 032308 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    Huang, X.L., Guo, J.L., Yi, X.X.: Phys. Rev. A 80, 054301 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    Pumulo, N., Sinayskiy, I., Petruccione, F.: Phys. Lett. A 375, 3157 (2011)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Bellomo, B., Antezza, M.: Phys. Rev. A 91, 042124 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    Yeo, Y.: Phys. Rev. A 66, 062312 (2002)ADSCrossRefGoogle Scholar
  13. 13.
    Zhang, G.-F.: Phys. Rev. A 75, 034304 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    Qin, W., Guo, J.-L.: Theor. Phys. 54, 2386 (2015)CrossRefGoogle Scholar
  15. 15.
    Fortes, R., Rigolin, G.: Rev. A 96, 022315 (2017)CrossRefGoogle Scholar
  16. 16.
    Angelakis, D.G., Santos, M.F., Bose, S.: Phys. Rev. A 76, 031805(R) (2007)ADSCrossRefGoogle Scholar
  17. 17.
    Ogden, C.D., Irish, E.K., Kim, M.S.: Phys. Rev. A 78, 063805 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    Yabu-Uti, B.F.C., Roversi, J.A.: Quantum Inf. Process. 12, 189 (2013)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Abdel-Aty, M.: Prog. Quant. Electron. 31, 1 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    Pellizzari, T., Gardiner, S.A., Cirac, J.I., Zoller, P.: Model. Phys. Rev. Lett. 75, 3788 (1995)ADSCrossRefGoogle Scholar
  21. 21.
    Zheng, S.-B., Guo, G.-C.: Phys. Rev. Lett. 85, 2392 (2000)ADSCrossRefGoogle Scholar
  22. 22.
    Cao, M., Zhu, S.Q.: Phys. Rev. A 71, 034311 (2005)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Wu, K.-D., Zhou, B., Cao, W.-Q.: Phys. Lett. A 362, 381 (2007)ADSCrossRefGoogle Scholar
  24. 24.
    Huang, X.-B., Zhong, Z.-R., Chen, Y.-H.: Quantum Inf. Process. 14, 4475 (2015)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    Abbasi, M.R.: Phys. A 426, 1 (2015)CrossRefGoogle Scholar
  26. 26.
    Wootters, W.K.: Phys. Rev. Lett. 80, 2245 (1998)ADSCrossRefGoogle Scholar
  27. 27.
    Meyer, D.A., Wallach, N.R.: J. Math. Phys. 43, 4273 (2002)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    Brennen, G.K.: Quantum Inf. Comput. 3, 619 (2003)MathSciNetGoogle Scholar
  29. 29.
    Rungta, P., Bužek, V., Caves, C.M., Hillery, M., Milburn, G.J.: Phys. Rev. A 64, 042315 (2001)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    Endrejat, J., Büttner, H.: Phys. Rev. A 71, 012305 (2005)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    Cetina, M., Bylinskii, A., Karpa, L., Gangloff, D., Beck, K.M., Ge, Y., Scholz, M., Grier, A.T., Chuang, I., Vuletiæ, V.: New J. Phys. 15, 053001 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    Ahmed, A.H.M., Cheong, L.Y., Zakaria, N., Metwally, N., Eleuch, H.: AIP Conf. Proc. 1482, 373 (2012)ADSCrossRefGoogle Scholar
  33. 33.
    Abdel-Aty, A.H., Zakaria, N., Cheong, L.Y., Metwally, N.: J. Comput. Theor. Nanosci. 12, 2213 (2015)CrossRefGoogle Scholar
  34. 34.
    Siegle, T., Schierle, S., Kraemmer, S., Richter, B., Wondimu, S.F., Schuch, P., Koos, C., Kalt, H.: Light Sci. Appl. 6, e16224 (2017)ADSCrossRefGoogle Scholar
  35. 35.
    Ye, J., Vernooy, D.W., Kimble, H.J.: Phys. Rev. Lett. 83, 4987 (1999)ADSCrossRefGoogle Scholar
  36. 36.
    Homid, A.H., Abdel-Aty, A., Abdel-Aty, M., Badawi, A., Obada, A.-S.F.: Opt. Soc. Am. B 32, 2025 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Micro-Nano Measurement-Manipulation and Physics (Ministry of Education), School of Physics and Nuclear Energy EngineeringBeihang UniversityBeijingChina

Personalised recommendations