International Journal of Theoretical Physics

, Volume 57, Issue 6, pp 1691–1704 | Cite as

Predicting Atomic Decay Rates Using an Informational-Entropic Approach

  • Marcelo Gleiser
  • Nan Jiang


We show that a newly proposed Shannon-like entropic measure of shape complexity applicable to spatially-localized or periodic mathematical functions known as configurational entropy (CE) can be used as a predictor of spontaneous decay rates for one-electron atoms. The CE is constructed from the Fourier transform of the atomic probability density. For the hydrogen atom with degenerate states labeled with the principal quantum number n, we obtain a scaling law relating the n-averaged decay rates to the respective CE. The scaling law allows us to predict the n-averaged decay rate without relying on the traditional computation of dipole matrix elements. We tested the predictive power of our approach up to n = 20, obtaining an accuracy better than 3.7% within our numerical precision, as compared to spontaneous decay tables listed in the literature.


Atomic decay rates Information theory Configurational entropy 



MG and NJ are partially supported by a US Department of Energy grant DE-SC001038.


  1. 1.
    Cornish, S.L., Claussen, N.R., Roberts, J.L., Cornell, E.A., Wieman, C.E.: Phys. Rev. Lett. 85, 1795 (2000)ADSCrossRefGoogle Scholar
  2. 2.
    Shapiro, S.L., Teukolsky, S.A.: Black Holes, White Dwarfs and Neutron Stars: the Physics of Compact Objects. Wiley, New York (2008)Google Scholar
  3. 3.
    Hayashi, C.: Nonlinear Oscillations in Physical Systems. Princeton University Press, Princeton (2014)zbMATHGoogle Scholar
  4. 4.
    Berestetskii, V.B., Lifshitz, E.M., Pitaevski, L.P.: Quantum Electrodynamics, vol. 4. Butterworth-Heinemann, Oxford (1982)Google Scholar
  5. 5.
    Zurek, W.H.: Rev. Mod. Phys. 75, 715 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    Shannon, C.E.: ACM SIGMOBILE Mobile Computing and Communications Review 5, 3 (2001)CrossRefGoogle Scholar
  7. 7.
    Gleiser, M., Stamatopoulos, N.: Phys. Lett. B 713, 304 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    Sowinski, D., Gleiser, M.: arXiv:1606.09641 (2016)
  9. 9.
    Yánez, R., Van Assche, W., Dehesa, J.: Phys. Rev. A 50, 3065 (1994)ADSCrossRefGoogle Scholar
  10. 10.
    Esquivel, R.O., Angulo, J.C., Antolín, J., Dehesa, J.S., López-Rosa, S., Flores-Gallegos, N.: Phys. Chem. Chem. Phys. 12, 7108 (2010)CrossRefGoogle Scholar
  11. 11.
    Katriel, J., Sen, K.: J. Comput. Appl. Math. 233, 1399 (2010)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Manzano, D.: Physica A: Statistical Mechanics and its Applications 391, 6238 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    Gleiser, M., Sowinski, D.: Phys. Lett. B 727, 272 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    Gleiser, M., Jiang, N.: Phys. Rev. D 92, 044046 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    Gleiser, M., Sowinski, D.: Phys. Lett. B 747, 125 (2015)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Correa, R.A.C., da Rocha, R., de Souza Dutra, A.: Ann. Phys. 359, 198 (2015)CrossRefGoogle Scholar
  17. 17.
    Gleiser, M., Graham, N., Stamatopoulos, N.: Phys. Rev. D 83, 096010 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    Sakurai, J.J., Napolitano, J.: Modern Quantum Mechanics, 2nd ed. (Pearson, San Francisco, CA) (2011)Google Scholar
  19. 19.
    Einstein, A.: The old quantum theory: the commonwealth and international library: selected readings in physics, 167 (2013)Google Scholar
  20. 20.
    Weisskopf, V., Wigner, E.: Zeitschrift für Physik 63, 54 (1930)ADSCrossRefGoogle Scholar
  21. 21. Spontaneous transitions of Hydrogen Atoms database: (2015)
  22. 22.
    Podolsky, B., Pauling, L.: Phys. Rev. 34, 109 (1929)ADSCrossRefGoogle Scholar
  23. 23.
    Watson, G.N.: A Treatise on the Theory of Bessel Functions. Cambridge University Press, Cambridge (1995)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics and AstronomyDartmouth CollegeHanoverUSA

Personalised recommendations