International Journal of Theoretical Physics

, Volume 57, Issue 5, pp 1516–1548 | Cite as

LSB-based Steganography Using Reflected Gray Code for Color Quantum Images

Article
  • 64 Downloads

Abstract

At present, the classical least-significant-bit (LSB) based image steganography has been extended to quantum image processing. For the existing LSB-based quantum image steganography schemes, the embedding capacity is no more than 3 bits per pixel. Therefore, it is meaningful to study how to improve the embedding capacity of quantum image steganography. This work presents a novel LSB-based steganography using reflected Gray code for colored quantum images, and the embedding capacity of this scheme is up to 4 bits per pixel. In proposed scheme, the secret qubit sequence is considered as a sequence of 4-bit segments. For the four bits in each segment, the first bit is embedded in the second LSB of B channel of the cover image, and and the remaining three bits are embedded in LSB of RGB channels of each color pixel simultaneously using reflected-Gray code to determine the embedded bit from secret information. Following the transforming rule, the LSB of stego-image are not always same as the secret bits and the differences are up to almost 50%. Experimental results confirm that the proposed scheme shows good performance and outperforms the previous ones currently found in the literature in terms of embedding capacity.

Keywords

Quantum image processing Quantum image steganography Gray code Least-significant-bit Embedding capacity 

Notes

Acknowledgements

The authors appreciate the kind comments and constructive suggestions of the anonymous reviewers. This work was supported by the Natural Science Foundation of Heilongjiang Province of China (Grant No. F2015021) and the PetroChina Innovation Foundation (Grant No. 2016D-5007-0302).

References

  1. 1.
    Cox, I., Miller, M., Bloom, J., et al.: DigitalWatermarking and Steganography. Morgan Kaufmann, Burlington (2007)Google Scholar
  2. 2.
    Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21(6/7), 467–488 (1982)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Venegas-Andraca, S., Bose, S.: Storing, processing, and retrieving an image using quantum mechanics. In: Proceedings of SPIE Conference of Quantum Information and Computation, vol. 5105, pp. 134–147 (2003)Google Scholar
  4. 4.
    Latorre, J.: Image Compression and Entanglement. arXiv:quant-ph/0510031 (2005)
  5. 5.
    Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Quantum Inf. Process. 10(1), 63–84 (2011)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Le, P., Iliyasu, A., Dong, F., Hirota, K.: A flexible representation and invertible transformations for images on quantum computers. N. Adv. Intell. Signal Process. Stud. Comput. Intell. 372, 179–202 (2011)CrossRefGoogle Scholar
  7. 7.
    Yan, F., Iliyasu, A.M., Venegas-Andraca, S.E.: A survey of quantum image representations. Quantum Inf. Process. 15(1), 1–35 (2016)ADSMathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Yuan, S., Mao, X., Xue, Y., Chen, L., Xiong, Q., Compare, A.: SQR: a simple quantum representation of infrared images. Quantum Inf. Process. 13 (6), 1353–1379 (2014)ADSMathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Sun, B., Iliyasu, A., Yan, F., Dong, F., Hirota, K.: An RGB multi-channel representation for images on quantum computers. J. Adv. Comput. Intell. Intell. Info. 17(3), 404–417 (2013)CrossRefGoogle Scholar
  10. 10.
    Sun, B., Le, P., Iliyasu, A., Yan, F., Garcia, J., Dong, F., Hirota, K.: Amulti-channel representation for images on quantum computers using the RGB color space. In: IEEE 7th International Symposium on Intelligent Signal Processing (WISP), pp. 1–6 (2011)Google Scholar
  11. 11.
    Zhang, Y., Lu, K., Gao, Y., et al.: NEQR: a novel enhanced quantum representation of digital images. Quantum Inf. Process. 12(8), 2833–2860 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Iliyasu, A., Le, P., Dong, F., et al.: Watermarking and authentication of quantum images based on restricted geometric transformations. Inf. Sci. 186(1), 126–149 (2012)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Iliyasu, A., Le, P., Yan, F., et al.: A two-tier scheme for greyscale quantum image watermarking and recovery. Int. J. Innov. Comput. Appl. 5(2), 85–101 (2013)CrossRefGoogle Scholar
  14. 14.
    Zhang, W., Gao, F., Liu, B., et al.: A watermark strategy for quantum images based on quantum fourier transform. Quantum Inf. Process. 12(2), 793–803 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Song, X., Wang, S., Liu, S., et al.: A dynamic watermarking scheme for quantum images using quantum wavelet transform. Quantum Inf. Process. 12(12), 3689–3706 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Song, X., Wang, S., Abd El-Latif, A., et al.: Dynamic watermarking scheme for quantum images based on Hadamard transform. Multimed. Syst. 20(4), 379–388 (2014)CrossRefGoogle Scholar
  17. 17.
    Yan, F., Iliyasu, A., Sun, B., et al.: A duple watermarking strategy for multi-channel quantum images. Quantum Inf. Process. 14(5), 1675–1692 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    MiyakeK, S., Nakamae, K.: A quantum watermarking scheme using simple and small-scale quantum circuits. Quantum Inf. Process. 15(5), 1849–1864 (2016)ADSMathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Li, P.C., Xiao, H., Li, B.X.: Quantum representation and watermark strategy for color images based on the controlled rotation of qubits. Quantum Inf. Process. 15 (11), 4415–4440 (2016)ADSMathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Jang, N., Wang, L.: A novel strategy for quantum image steganography based on moire pattern. Int. J. Theor. Phys. 54(3), 1021–1032 (2015)CrossRefMATHGoogle Scholar
  21. 21.
    Wang, S., Sang, S.Z., Song, X.H., et al.: Least significant qubit (LSQb) information hiding algorithm for quantum image. Measurement 73, 352–359 (2015)CrossRefGoogle Scholar
  22. 22.
    Jang, N., Zhao, N., Wang, L.: LSB based quantum image steganography algorithm. Int. J. Theor. Phys. 55(1), 107–123 (2016)CrossRefMATHGoogle Scholar
  23. 23.
    Mosayeb, N., Shahrokh, H., Masoud, B., et al.: A new secure quantum watermarking scheme. Optik 139, 77–86 (2017)CrossRefGoogle Scholar
  24. 24.
    Zhou, R.G., Hu, W.W., Fan, P.: Quantum watermarking scheme through Arnold scrambling and LSB steganography. Quantum Inf. Process. 16(9), 212 (2017)ADSMathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Sang, J.Z., Wang, S., Li, Q.: Least significant qubit algorithm for quantum images. Quantum Inf. Process. 15(11), 4441–4460 (2016)ADSMathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Shahrokh, H., Mohammad, R.P., Reza, G.: Quantum red–green–blue image steganography. Int. J. Quantum Inf. 15(5), 1750039(24 pages) (2017)MathSciNetMATHGoogle Scholar
  27. 27.
    Shahrokh, H., Ehsan, F.: A novel quantum LSB-based steganography method using the Gray code for colored quantum images. Quantum Inf. Process. 16(10), 242 (2017)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Shahrokh, H., Reza, G., Monireh, H., et al.: A robust blind quantum copyright protection method for colored images based on owner’s signature. Int. J. Theor. Phys. 56(8), 2562–2578 (2017)CrossRefMATHGoogle Scholar
  29. 29.
    Gray, F.: Pulse code communication. United States Patent 2632058 (1953)Google Scholar
  30. 30.
    Chen, C.C., Chang, C.C.: LSB-based steganography using reflected Gray code. IEICE - Trans. Inf. Syst. E91-D(4), 1110–1116 (2008)ADSCrossRefGoogle Scholar
  31. 31.
    Jiang, N., Wang, L., Wu, W.Y.: Quantum Hilbert image scrambling. Int. J. Theor. Phys. 53(7), 2463–2484 (2014)CrossRefMATHGoogle Scholar
  32. 32.
    Wang, D., Liu, Z., Zhu, W., et al.: Design of quantum comparator based on extended general Toffoli gates with multiple targets. Comput. Sci. 39(9), 302–306 (2012)Google Scholar
  33. 33.
    Barenco, A., Bennett, C.H., Cleve, R., et al.: Elementary gates for quantum computation. Phys. Rev. A. 52(5), 3457–3467 (1995)ADSCrossRefGoogle Scholar
  34. 34.
    Wang, J., Jiang, N., Wang, L.: Quantum image translation. Quantum Inf. Process. 14(5), 1589–1604 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Gonzalez, Woods, Eddins.: Image Processing Place. http://www.prenhall.com/gonzalezwoods
  36. 36.
    Kutter, M., Bhattacharjee, S.K., Ebrahimi, T.: Towards second generation watermarking systems. In: IEEE International Conference on Image Process, vol. 1, pp. 320–323 (1999)Google Scholar
  37. 37.
    Sayrol, E., Vidal, J., Cabanillas, S., et al.: Optimum watermark detection for color images. In: IEEE International Conference on Image Processing, vol. 1, pp. 231–235 (1999)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Computer & Information TechnologyNortheast Petroleum UniversityDaqingChina

Personalised recommendations