International Journal of Theoretical Physics

, Volume 57, Issue 5, pp 1440–1454 | Cite as

Semi-quantum Dialogue Based on Single Photons

Article
  • 83 Downloads

Abstract

In this paper, we propose two semi-quantum dialogue (SQD) protocols by using single photons as the quantum carriers, where one requires the classical party to possess the measurement capability and the other does not have this requirement. The security toward active attacks from an outside Eve in the first SQD protocol is guaranteed by the complete robustness of present semi-quantum key distribution (SQKD) protocols, the classical one-time pad encryption, the classical party’s randomization operation and the decoy photon technology. The information leakage problem of the first SQD protocol is overcome by the classical party’ classical basis measurements on the single photons carrying messages which makes him share their initial states with the quantum party. The security toward active attacks from Eve in the second SQD protocol is guaranteed by the classical party’s randomization operation, the complete robustness of present SQKD protocol and the classical one-time pad encryption. The information leakage problem of the second SQD protocol is overcome by the quantum party’ classical basis measurements on each two adjacent single photons carrying messages which makes her share their initial states with the classical party. Compared with the traditional information leakage resistant QD protocols, the advantage of the proposed SQD protocols lies in that they only require one party to have quantum capabilities. Compared with the existing SQD protocol, the advantage of the proposed SQD protocols lies in that they only employ single photons rather than two-photon entangled states as the quantum carriers. The proposed SQD protocols can be implemented with present quantum technologies.

Keywords

Semi-quantum cryptography Semi-quantum dialogue (SQD) Single photon Information leakage Complete robustness One-time pad encryption Decoy photon technology Randomization 

Notes

Acknowledgments

The authors would like to thank the anonymous reviewers for their valuable comments that help enhancing the quality of this paper. Funding by the National Natural Science Foundation of China (Grant No. 61402407) and the Natural Science Foundation of Zhejiang Province (Grant No. LY18F020007) is gratefully acknowledged.

References

  1. 1.
    Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, pp. 175–179. IEEE Press, Bangalore (1984)Google Scholar
  2. 2.
    Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67(6), 661–663 (1991)ADSMathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bell theorem. Phys. Rev. Lett. 68, 557–559 (1992)ADSMathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635 (2000)ADSCrossRefGoogle Scholar
  5. 5.
    Zhang, C.M., Song, X.T., Treeviriyanupab, P., et al.: Delayed error verification in quantum key distribution. Chin. Sci. Bull. 59(23), 2825–2828 (2014)CrossRefGoogle Scholar
  6. 6.
    Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    Wang, C., Deng, F.G., Li, Y.S., Liu, X.S., Long, G.L.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71, 044305 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    Chen, X.B., Wen, Q.Y., Guo, F.Z., Sun, Y., Xu, G., Zhu, F.C.: Controlled quantum secure direct communication with W state. Int. J. Quant. Inform. 6(4), 899–906 (2008)MATHCrossRefGoogle Scholar
  11. 11.
    Gu, B., Huang, Y.G., Fang, X., Zhang, C.Y.: A two-step quantum secure direct communication protocol with hyperentanglement. Chin. Phys. B 20(10), 100309 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    Liu, D., Chen, J.L., Jiang, W.: High-capacity quantum secure direct communication with single photons in both polarization and spatial-mode degrees of freedom. Int. J. Theor. Phys. 51, 2923–2929 (2012)MATHCrossRefGoogle Scholar
  13. 13.
    Chang, Y., Xu, C.X., Zhang, S.B., et al.: Controlled quantum secure direct communication and authentication protocol based on five-particle cluster state and quantum one-time pad. Chin. Sci. Bull. 59(21), 2541–2546 (2014)CrossRefGoogle Scholar
  14. 14.
    Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)ADSMathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162–168 (1999)ADSCrossRefGoogle Scholar
  16. 16.
    Xiao, L., Long, G.L., Deng, F.G., Pan, J.W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69, 052307 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    Hao, L., Li, J.L., Long, G.L.: Eavesdropping in a quantum secret sharing protocol based on Grover algorithm and its solution. Sci. China Ser. G Phys. Mech. Astron. 53(3), 491–495 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    Hao, L., Wang, C., Long, G.L.: Quantum secret sharing protocol with four state Grover algorithm and its proof-of-principle experimental demonstration. Opt. Commun. 284, 3639–3642 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    Zhang, Z.J., Man, Z.X.: Secure direct bidirectional communication protocol using the Einstein-Podolsky-Rosen pair block. arXiv:quant-ph/0403215 (2004)
  20. 20.
    Zhang, Z.J., Man, Z.X.: Secure bidirectional quantum communication protocol without quantum channel. arXiv:quant-ph/0403217 (2004)
  21. 21.
    Nguyen, B.A.: Quantum dialogue. Phys. Lett. A 328(1), 6–10 (2004)ADSMathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Man, Z.X., Zhang, Z.J., Li, Y.: Quantum dialogue revisited. Chin. Phys. Lett. 22(1), 22–24 (2005)ADSCrossRefGoogle Scholar
  23. 23.
    Man, Z.X., Xia, Y.J.: Controlled bidirectional quantum direct communication by using a GHZ state. Chin. Phys. Lett. 23(7), 1680–1682 (2006)ADSCrossRefGoogle Scholar
  24. 24.
    Ji, X., Zhang, S.: Secure quantum dialogue based on single-photon. Chin. Phys. 15(7), 1418–1420 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    Man, Z.X., Xia, Y.J., Nguyen, B.A.: Quantum secure direct communication by using GHZ states and entanglement swapping. J. Phys. B-At. Mol. Opt. Phys. 39 (18), 3855–3863 (2006)ADSCrossRefGoogle Scholar
  26. 26.
    Chen, Y., Man, Z.X., Xia, Y.J.: Quantum bidirectional secure direct communication via entanglement swapping. Chin. Phys. Lett. 24(1), 19–22 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    Yang, Y.G., Wen, Q.Y.: Quasi-secure quantum dialogue using single photons. Sci. China Ser. G Phys. Mech. Astron. 50(5), 558–562 (2007)ADSCrossRefGoogle Scholar
  28. 28.
    Gao, F., Guo, F.Z., Wen, Q.Y., Zhu, FC: Revisiting the security of quantum dialogue and bidirectional quantum secure direct communication. Sci. China Ser. G Phys. Mech. Astron. 51(5), 559–566 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    Tan, Y.G., Cai, Q.Y.: Classical correlation in quantum dialogue. Int. J. Quant. Inform. 6(2), 325–329 (2008)CrossRefGoogle Scholar
  30. 30.
    Shi, G.F., Xi, X.Q., Tian, X.L., Yue, R.H.: Bidirectional quantum secure communication based on a shared private Bell state. Opt. Commun. 282(12), 2460–2463 (2009)ADSCrossRefGoogle Scholar
  31. 31.
    Shi, G.F., Xi, X.Q., Hu, M.L., Yue, R.H.: Quantum secure dialogue by using single photons. Opt. Commun. 283(9), 1984–1986 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    Sheikhehi, F., Naseri, M.: Probabilistic bidirectional quantum secure communication based on a shared partially entangled states. Int. J. Quant. Inform. 9 (Suppl.), 357–365 (2011)MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Shen, D.S., Ma, W.P., Yin, X.R., Li, X.P.: Quantum dialogue with authentication based on Bell states. Int. J. Theor. Phys. 52(6), 1825–1835 (2013)MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Ye, T.Y., Jiang, L.Z.: Quantum dialogue without information leakage based on the entanglement swapping between any two Bell states and the shared secret Bell state. Phys. Scr. 89(1), 015103 (2014)ADSCrossRefGoogle Scholar
  35. 35.
    Ye, T.Y.: Large payload bidirectional quantum secure direct communication without information leakage. Int. J. Quant. Inform. 11(5), 1350051 (2013)MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    Ye, T.Y.: Robust quantum dialogue based on the entanglement swapping between any two logical Bell states and the shared auxiliary logical Bell state. Quantum Inf. Process. 14(4), 1469–1486 (2015)ADSMATHCrossRefGoogle Scholar
  37. 37.
    Wang, H., Zhang, Y.Q., Liu, X.F., Hu, Y.P.: Efficient quantum dialogue using entangled states and entanglement swapping without information leakage. Quantum Inf. Process. 15(6), 2593–2603 (2016)ADSMathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    Shi, G.F.: Bidirectional quantum secure communication scheme based on Bell states and auxiliary particles. Opt. Commun. 283(24), 5275–5278 (2010)ADSCrossRefGoogle Scholar
  39. 39.
    Shi, G.F., Tian, X.L.: Quantum secure dialogue based on single photons and controlled-not operations. J. Mod. Opt. 57(20), 2027–2030 (2010)ADSCrossRefGoogle Scholar
  40. 40.
    Gao, G.: Two quantum dialogue protocols without information leakage. Opt. Commun. 283(10), 2288–2293 (2010)ADSCrossRefGoogle Scholar
  41. 41.
    Gao, G., Fang, M., Wang, Y., Zang, D.J.: A Ping-Pong quantum dialogue scheme using genuine four-particle entangled states. Int. J. Theor. Phys. 50 (10), 3089–3095 (2011)MathSciNetMATHCrossRefGoogle Scholar
  42. 42.
    Ye, T.Y.: Quantum secure dialogue with quantum encryption. Commun. Theor. Phys. 62(3), 338–342 (2014)ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    Ye, T.Y.: Fault tolerant channel-encrypting quantum dialogue against collective noise. Sci. China Phys. Mech. Astron. 58(4), 040301 (2015)CrossRefGoogle Scholar
  44. 44.
    Huang, L.Y., Ye, T.Y.: A kind of quantum dialogue protocols without information leakage assisted by auxiliary quantum operation. Int. J. Theor. Phys. 54(8), 2494–2504 (2015)MathSciNetMATHCrossRefGoogle Scholar
  45. 45.
    Ye, T.Y.: Quantum dialogue without information leakage using a single quantum entangled state. Int. J. Theor. Phys. 53(11), 3719–3727 (2014)MATHCrossRefGoogle Scholar
  46. 46.
    Boyer, M., Kenigsberg, D., Mor, T.: Quantum key distribution with classical Bob. Phys. Rev. Lett. 99(14), 140501 (2007)ADSMathSciNetMATHCrossRefGoogle Scholar
  47. 47.
    Boyer, M., Gelles, R., Kenigsberg, D., Mor, T.: Semiquantum key distribution. Phys. Rev. A 79(3), 032341 (2009)ADSMathSciNetMATHCrossRefGoogle Scholar
  48. 48.
    Lu, H., Cai, Q.Y.: Quantum key distribution with classical Alice. Int. J. Quant. Inform. 6(6), 1195–1202 (2008)MATHCrossRefGoogle Scholar
  49. 49.
    Zou, X.F., Qiu, D.W., Li, L.Z., Wu, L.H., Li, L.J.: Semiquantum-key distribution using less than four quantum states. Phys. Rev. A 79(5), 052312 (2009)ADSCrossRefGoogle Scholar
  50. 50.
    Sun, Z.W., Du, R.G., Long, D.Y.: Quantum key distribution with limited classical Bob. Int. J. Quant. Inform. 11(1), 1350005 (2013)MathSciNetCrossRefGoogle Scholar
  51. 51.
    Zou, X.F., Qiu, D.W., Zhang, S.Y., Mateus, P.: Semiquantum key distribution without invoking the classical party’s measurement capability. Quantum Inf. Process. 14(8), 2981–2996 (2015)ADSMathSciNetMATHCrossRefGoogle Scholar
  52. 52.
    Zhang, W., Qiu, D.W.: A single-state semi-quantum key distribution protocol and its security proof. arXiv:quant-ph/161203087 (2017)
  53. 53.
    Krawec, W.O.: Restricted attacks on semi-quantum key distribution protocols. Quantum Inf. Process. 13(11), 2417–2436 (2014)MathSciNetMATHCrossRefGoogle Scholar
  54. 54.
    Krawec, W.O.: Security of a semi-quantum protocol where reflections contribute to the secret key. Quantum Inf. Process. 15(5), 2067–2090 (2016)ADSMathSciNetMATHCrossRefGoogle Scholar
  55. 55.
    Boyer, M., Mor, T.: Comment on “Semiquantum-key distribution using less than four quantum states”. Phys. Rev. A 83(4), 046301 (2011)ADSCrossRefGoogle Scholar
  56. 56.
    Zou, X.F., Qiu, D.W.: Reply to “Comment on ‘Semiquantum-key distribution using less than four quantum states’ ”. Phys. Rev. A 83(4), 046302 (2011)ADSCrossRefGoogle Scholar
  57. 57.
    Wang, J., Zhang, S., Zhang, Q., Tang, C.J.: Semiquantum key distribution using entangled states. Chin. Phys. Lett. 28(10), 100301 (2011)ADSCrossRefGoogle Scholar
  58. 58.
    Krawec, W.O.: Mediated semi-quantum key distribution. Phys. Rev. A 91(3), 032323 (2015)ADSCrossRefGoogle Scholar
  59. 59.
    Boyer, M., Katz, M., Liss, R., Mor, T.: A new and feasible protocol for semi-quantum key distribution. arXiv:quant-ph/170107044 (2017)
  60. 60.
    Tan, Y.G., Lu, H., Cai, Q.Y.: Comment on “Quantum key distribution with classical Bob”. Phys. Rev. Lett. 102(9), 098901 (2009)ADSMathSciNetCrossRefGoogle Scholar
  61. 61.
    Zhang, X.Z., Gong, W.G., Tan, Y.G., Ren, Z.Z., Guo, X.T.: Quantum key distribution series network protocol with M-classical Bobs. Chin. Phys. B 18(6), 2143–2148 (2009)ADSCrossRefGoogle Scholar
  62. 62.
    Krawec, W.O.: Security proof of a semi-quantum key distribution protocol. In: Proceedings of the 2015 IEEE International Symposium on Information Theory (ISIT), pp. 686–690. IEEE Press, Hong Kong (2015)Google Scholar
  63. 63.
    Zhang, W., Qiu, D.W., Mateus, P.: Security of a single-state semi-quantum key distribution protocol. arXiv:quant-ph/161203170 (2016)
  64. 64.
    Zou, X.F., Qiu, D.W.: Three-step semiquantum secure direct communication protocol. Sci. China Phys. Mech. Astron. 57(9), 1696–1702 (2014)ADSCrossRefGoogle Scholar
  65. 65.
    Li, Q., Chan, W.H., Long, D.Y.: Semiquantum secret sharing using entangled states. Phys. Rev. A 82(2), 022303 (2010)ADSCrossRefGoogle Scholar
  66. 66.
    Wang, J., Zhang, S., Zhang, Q., Tang, C.J.: Semiquantum secret sharing using two-particle entangled state. Int. J. Quant. Inform. 10(5), 1250050 (2012)MathSciNetMATHCrossRefGoogle Scholar
  67. 67.
    Li, L.Z., Qiu, D.W., Mateus, P.: Quantum secret sharing with classical Bobs. J. Phys. A: Math. Theor. 46(4), 045304 (2013)ADSMathSciNetMATHCrossRefGoogle Scholar
  68. 68.
    Xie, C., Li, L.Z., Qiu, D.W.: A novel semi-quantum secret sharing scheme of specific bits. Int. J. Theor. Phys. 54(10), 3819–3824 (2015)MathSciNetMATHCrossRefGoogle Scholar
  69. 69.
    Yang, C.W., Hwang, T.: Efficient key construction on semi-quantum secret sharing protocols. Int. J. Quant. Inform. 11(5), 1350052 (2013)MathSciNetMATHCrossRefGoogle Scholar
  70. 70.
    Chou, W.H., Hwang, T., Gu, J.: Semi-quantum private comparison protocol under an almost-dishonest third party. arXiv:1607.07961
  71. 71.
    Thapliyala, K., Sharmab, R.D., Pathak, A.: Orthogonal-state-based and semi-quantum protocols for quantum private comparison in noisy environment. arXiv:1608.00101
  72. 72.
    Liu, W.J., Chen, Z.Y., Ji, S., Wang, H.B., Zhang, J.: Multi-party semi-quantum key agreement with delegating quantum computation. Int. J. Theor. Phys. 56, 3164–3174 (2017)MathSciNetMATHCrossRefGoogle Scholar
  73. 73.
    Shukla, C., Thapliyal, K., Pathak, A.: Semi-quantum communication: protocols for key agreement, controlled secure direct communication and dialogue. Quantum Inf. Process. 16, 295 (2017)ADSMathSciNetMATHCrossRefGoogle Scholar
  74. 74.
    Shannon, C.E.: Communication theory of secrecy system. Bell Syst. Tech. J. 28, 656–715 (1949)MathSciNetMATHCrossRefGoogle Scholar
  75. 75.
    Li, C.Y., Zhou, H.Y., Wang, Y., Deng, F.G.: Secure quantum key distribution network with Bell states and local unitary operations. Chin. Phys. Lett. 22(5), 1049–1052 (2005)ADSCrossRefGoogle Scholar
  76. 76.
    Li, C.Y., Li, X.H., Deng, F.G., Zhou, P., Liang, Y.J., Zhou, H.Y.: Efficient quantum cryptography network without entanglement and quantum memory. Chin. Phys. Lett. 23(11), 2896–2899 (2006)ADSCrossRefGoogle Scholar
  77. 77.
    Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441 (2000)ADSCrossRefGoogle Scholar
  78. 78.
    Cai, Q.Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. A 351(1-2), 23–25 (2006)ADSMATHCrossRefGoogle Scholar
  79. 79.
    Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145–195 (2002)ADSMATHCrossRefGoogle Scholar
  80. 80.
    Deng, F.G., Zhou, P., Li, X.H., Li, C.Y., Zhou, H.Y.: Robustness of two-way quantum communication protocols against Trojan horse attack. quant-ph/0508168 (2005)
  81. 81.
    Li, X.H., Deng, F.G., Zhou, H.Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A 74, 054302 (2006)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Information & Electronic EngineeringZhejiang Gongshang UniversityHangzhouPeople’s Republic of China

Personalised recommendations