Advertisement

Authentication of Quantum Secure Communication Under Noise

  • Dong-fen LiEmail author
  • Rui-jin Wang
  • Ya-ming Yang
  • Jin-lian Chen
Article
  • 8 Downloads

Abstract

We analyze the properties of immune noise model and propose a noise model that achieves high fidelity and in secure channel. We focuse on four different types of channel properties which include bit-flipping noise, phase-flip or phase-damping noise, depolarization noise, and amplitude-damping noise. Finally, we analyze Alice’s qubit efficiency and all quantum bit efficiency in noise, and further design a high-fidelity immunity noise model based on density matrix. This research article is one of the cores of constructing a unified framework for high-fidelity secure communication channels. we also using decoherence-free subspaces (DFS) immune combined noise characteristics, a generalized entangled states to convert IDs that are initially shared by both the parties into logical quantum states for noise immunity, randomly mixed message sequence and transmitted.

Keywords

Quantum secure communication Immune noise model Quantum dialogue Open systems 

Notes

Acknowledgements

This work is supported by National Natural Science Foundation of China (61802033), Science and Technology projects in Sichuan Province (2016FZ0002, 2015JY0178, 2015KZ002, 2015JY0030, 2016ZC2575).

References

  1. 1.
    Cao, Z.L., Yang, M., Guo, G.C.: The scheme for realizing probabilistic teleportation of atomic states and purifying the quantum channel on cavity QED. Phys. Lett. A 308(5), 349–354 (2003)ADSMathSciNetzbMATHGoogle Scholar
  2. 2.
    Bennett, C.H., Wiesner, S.J.: Communication via one-and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69(20), 2881–2884 (1992)ADSMathSciNetzbMATHGoogle Scholar
  3. 3.
    Ye, L., Guo, G.C.: Scheme for implementing quantum dense coding in cavity QED. Phys. Rev. A 71(3), 034304 (2005)ADSGoogle Scholar
  4. 4.
    Saha, D, Panigrahi, P.K.: N-qubit quantum teleportation, information splitting and superdense coding through the composite GHZCBell channel [J]. Quantum Inf. Process. 11(2), 615–628 (2012)MathSciNetGoogle Scholar
  5. 5.
    Nie, Y.Y., Li, Y.H., Liu, J.C., Sang, M.H.: Quantum information splitting of an arbitrary three-qubit state by using two four-qubit cluster states. Quantum Inf. Process. 10(3), 297–305 (2011)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Nie, Y.Y., Li, Y.H., Liu, J.C., Sang, M.H.: Quantum information splitting of an arbitrary three-qubit state by using a genuinely entangled five-qubit state and a Bell-state. Quantum Inf. Process. 11(2), 563–569 (2012)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Hou, K., Liu, G.H., Zhang, X.X., Sheng, S.Q.: An efficient scheme for five-party quantum state sharing of an arbitrary m-qubit steta using multiqubit cluster states. Quantum Inf. Process. 10(4), 463–473 (2011). 11(2),615–628(2012)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Man, Z.X., Xia, Y.J., An, N.B.: Quantum state sharing of an arbitrary multi-qubit state using non-maximally entangled GHZ states. Eur. Phys. J. D 42(2), 333–340 (2007)ADSMathSciNetGoogle Scholar
  9. 9.
    Zheng, S.B.: Splitting quantum information via W states. Phys. Rev. A 74, 054303 (2006)ADSGoogle Scholar
  10. 10.
    Murao, M., Jonathan, D., Plenio, M.B., et al.: Quantum telecloning and multiparticle entanglement[J]. Phys. Rev. A 59(1), 156 (1999)ADSGoogle Scholar
  11. 11.
    Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret[J]. Phys. Rev. Lett. 83(3), 648 (1999)ADSGoogle Scholar
  12. 12.
    Wang, X.W., Zhang D.Y., Tang, S.Q., et al.: Multiparty hierarchical quantum-information splitting [J]. J. Phys. B Atomic Mol. Phys. 44(3), 035505 (2011)ADSGoogle Scholar
  13. 13.
    Wang, X.W., Zhang, D.Y., Tang, S.Q., et al.: Hierarchical quantum information splitting with six-photon cluster states[J]. Int. J. Theor. Phys. 49(11), 2691–2697 (2010)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Wang, XW, Xia, LX, Wang, Z., et al.: Hierarchical quantum-information splitting[J]. Optics Commun. 283(6), 1196–1199 (2010)ADSGoogle Scholar
  15. 15.
    Luo, MX, Deng, Y.: Quantum splitting an arbitrary three-qubit state with -state[J]. Quantum Inf. Process. 12(2), 773–784 (2013)ADSMathSciNetzbMATHGoogle Scholar
  16. 16.
    You-Bang, Z., Qun-Yong, Z., Yu-Wu, W.: Schemes for splitting quantum information with four-particle genuine entangled states[J]. Commun. Theor. Phys. 53 (5), 847 (2010)ADSMathSciNetzbMATHGoogle Scholar
  17. 17.
    Xiu, XM, Li, QY, Dong, L, et al.: Distributing a multi-photon polarization-entangled state with unitary fidelity via arbitrary collective noise channels[J]. Quantum Inf. Process. 14(1), 361–372 (2015)ADSMathSciNetzbMATHGoogle Scholar
  18. 18.
    Nie, Y., Li, Y., Wang, Z.: Semi-quantum information splitting using GHZ-type states. Quantum Inf. Process. 12(1), 437–448 (2012)ADSMathSciNetzbMATHGoogle Scholar
  19. 19.
    Zhang, W, Liu, YM, Yin, XF, et al.: Splitting four ensembles of two-qubit quantum information via three Einstein-Podolsky-Rosen pairs[J]. The European Phys. J. D 55(1), 189–195 (2009)ADSGoogle Scholar
  20. 20.
    Dong, L, Xiu, XM, Ren, YP, et al.: Teleportation of a two-qubit arbitrary unknown state using a four-qubit genuine entangled state with the combination of bell-state measurements[J]. J. Exp. Theor. Phys. 116(1), 15–19 (2013)ADSGoogle Scholar
  21. 21.
    Xiang, Y., Mo, Z.W.: Quantum secret sharing protocol based on four-dimensional three-particle entangled states[J]. Mod. Phys. Lett. B, 1550267 (2016)Google Scholar
  22. 22.
    Matsumoto, R.: Strongly secure quantum ramp secret sharing constructed from algebraic curves over finite fields (full version arXiv:1410.5126) [J] (2015)
  23. 23.
    Nguyen, B.A.: Quantum dialogue [J]. Phys. Lett. A 328(1), 6–10 (2004)ADSMathSciNetzbMATHGoogle Scholar
  24. 24.
    Xin, J., Shou, Z.: Secure quantum dialogue based on single-photon [J]. Chinese Phys. 15(7), 1418–1420 (2006)ADSGoogle Scholar
  25. 25.
    Xin, J., Jing, X.R., Zhang, Y.Q., Shou, Z.: Quantum dialogue by using single photons [J]. Alta Sinise Quantum Optical 14(3), 273–276 (2008)Google Scholar
  26. 26.
    Shi, G.F., Xi, X.Q., Hu, M.L., et al.: Quantum dialogue by using single photons [J]. Optics Commun. 283(9), 1984–1986 (2010)ADSGoogle Scholar
  27. 27.
    Shi, G.F., Tian, X.L.: Quantum secure dialogue based on single photons and controlled-not operations [J]. J. Mod. Opt. 57(20), 2027–2030 (2010)ADSGoogle Scholar
  28. 28.
    Yang, Y.G., Wen, Q.Y.: Quasi-secure quantum dialogue using single photons [J]. Sci. China, Ser. G 50(5), 558–562 (2007)Google Scholar
  29. 29.
    Gao, G., Wang, L.P.: A protocol for bidirectional quantum secure communication based on genuine four-particle entangled states [J]. Commun. Theor. Phys. 54(3), 447–451 (2010)ADSMathSciNetzbMATHGoogle Scholar
  30. 30.
    Gao, G., Fang, M., Wang, Y., et al.: A ping-pong quantum dialogue scheme using genuine four-particle entangled states [J]. Int. J. Theor. Phys. 50(10), 3089–3095 (2011)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Shen, D.S., Ma, W.P., et al.: Quantum dialogue with authentication based on Bell states [J]. Int. J. Theor. Phys. 52(6), 1825–1835 (2013)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Ye, T.Y., Jiang, L.Z.: Quantum dialogue without information leakage based on the en-tanglement swapping between any two Bell states and the shared secret Bell state [J]. Phys. Scripter 89(1), 015103 (2014)ADSGoogle Scholar
  33. 33.
    Bell, B.A., Markham, D., Herrera-Mart, D.A., et al.: Experimental demonstration of graph-state quantum secret sharing[J]. Nature Commun., 5 (2014)Google Scholar
  34. 34.
    Lin, TH, Lin, CY, Hwang, T.: Man-in-the-middle attack on quantum dialogue with au-thentication based on Bell states [J]. Int. J. Theor. Phys. 52(9), 3199–3203 (2013)zbMATHGoogle Scholar
  35. 35.
    Bauchi, L., Baumstein, S.L., S.P.: Quantum fidelity for arbitrary Gaussian states [J]. Phys. Rev. Lett. 115(26), 260501 (2015)ADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Cyber SecurityChengdu University of TechnologyChengduChina
  2. 2.School of Information and Software EngineeringUniversity of Electronic Science and Technology of ChinaChengduChina

Personalised recommendations