Categorical Equivalence Between Orthomodular Dynamic Algebras and Complete Orthomodular Lattices

  • Kohei Kishida
  • Soroush Rafiee Rad
  • Joshua Sack
  • Shengyang Zhong
Article
  • 38 Downloads

Abstract

This paper provides a categorical equivalence between two types of quantum structures. One is a complete orthomodular lattice, which is used for reasoning about testable properties of a quantum system. The other is an orthomodular dynamic algebra, which is a quantale used for reasoning about quantum actions. The result extends to more restrictive lattices than orthomodular lattices, and includes Hilbert lattices of closed subspaces of a Hilbert space. These other lattice structures have connections to a wide range of different quantum structures; hence our equivalence establishes a categorical connection between quantales and a great variety of quantum structures.

Keywords

Orthomodular dynamic algebra Complete orthomodular lattice Quantale 

References

  1. 1.
    Abramsky, S., Vickers, S.: Quantales, observational logic and process semantics. Math. Struct. Comput. Sci. 3, 161–227 (1993). doi:10.1017/S0960129500000189 MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Baltag, A., Smets, S.: Complete axiomatizations for quantum actions. Int. J. Theor. Phys. 44(12), 2267–2282 (2005)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bergfeld, J.M., Kishida, K., Sack, J., Zhong, S.: Duality for the logic of quantum actions. Studia Logica. 1–25 (2014). doi:10.1007/s11225-014-9592-x
  4. 4.
    Coecke, B., Smets, S.: The sasaki hook is not a [static] implicative connective but induces a backward [in time] dynamic one that assigns causes. Int. J. Theor. Phys. 43 (7–8), 1705–1736 (2004). doi:10.1023/B:IJTP.0000048815.92983.6e MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Rosenthal, K.: Quantales and Their Applications. Longman Higher Education (1990)Google Scholar
  6. 6.
    Sasaki, U.: Orthocomplemented lattices satisfying the exchange axiom. J. Sci. Hiroshima Univ. A 17, 293–302 (1954)MathSciNetMATHGoogle Scholar
  7. 7.
    Stubbe, I., van Steirteghem, B.: Propositional systems, Hilbert lattices and generalized Hilbert spaces. In: Engesser, K., Gabbay, D.M., Lehmann, D. (eds.) Handbook of Quantum Logic and Quantum Structures, pp 477–523. Elsevier Science B.V., Amsterdam (2007), 10.1016/B978-044452870-4/50033-9

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of OxfordOxfordUK
  2. 2.Institute for Logic, Language and ComputationUniversity of AmsterdamAmsterdamThe Netherlands
  3. 3.Department of Mathematics and StatisticsCalifornia State University Long BeachLong BeachUSA
  4. 4.Institute of Logic and CognitionSun Yat-sen UniversityGuangzhouChina

Personalised recommendations