International Journal of Theoretical Physics

, Volume 56, Issue 5, pp 1558–1564 | Cite as

Entropy-Growth in the Universe: Some Plausible Scenarios

  • Omar López-Cruz
  • Francisco Soto-Eguibar
  • Arturo Zúñiga-Segundo
  • Héctor M. Moya-Cessa
Article

Abstract

Diverse measurements indicate that entropy grows as the universe evolves, we analyze from a quantum point of view plausible scenarios that allow such increase.

Keywords

Entropy grow Open quantum systems Multiverses Milburns equation Non-extensive approach Tsallis statistics 

References

  1. 1.
    Tolman, R.C.: Relativity, Thermodynamics and Cosmology. Oxford University Press (1949)Google Scholar
  2. 2.
    Grøn, Ø.: Entropy and gravity. Entropy 14, 2456–2477 (2012)ADSMathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Pavón, D., Radicella, N.: Does the entropy of the universe tend to a maximum? Gen. Relat. Gravit. 45, 63 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Egan, C.A., Lineweaver, C.H.: A larger estimate of the entropy of the universe. Astrophys. J. 710, 1825–1834 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    Basu, B., Lynden-Bell, D.: A survey of entropy in the universe. QJRAS 31, 359 (1990)ADSGoogle Scholar
  6. 6.
    Frampton, P.H., Hsu, S.D.H., Kephart, T.W., Reeb, D.: What is the entropy of the universe? Class. Quan. Gravit. 26, 145005 (2009)ADSMathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Bekenstein, J.D.: Black holes and entropy. Phys. Rev. D 7, 2333–2346 (1973)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Hawking, S.W.: Black holes and entropy. Phys. Rev. D 13, 191–197 (1976)ADSCrossRefGoogle Scholar
  9. 9.
    Gibbons, G.W., Hawking, S.W.: Cosmological event horizons, thermodynamics, and particle creation. Phys. Rev. D 15, 2738–2751 (1977)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Mersini-Houghton, L., Vaas, R. (eds.): The Arrows of Time. A Debate in Cosmology. Springer, (2012)Google Scholar
  11. 11.
    Carr, B. (ed.): Universe or Multiverse? Cambridge University Press, (2007)Google Scholar
  12. 12.
    Adams, F.C., Laughlin, G.A: Dying universe: the long-term fate and evolution of astrophysical objects. Rev. Modern Phys. 69, 337 (1997)ADSCrossRefGoogle Scholar
  13. 13.
    Frautschi, S.: Entropy in an expanding universe. Sci. New Series 217(4560), 593–599 (1982)Google Scholar
  14. 14.
    Valageas, P., Silk, J.: The entropy history of the universe. Astron. Astrophys. 350, 725 (1999)ADSGoogle Scholar
  15. 15.
    Bojowald, M.: Quantum cosmology: A review. Rep. Progress Phys. 023901, 78 (2015)MathSciNetGoogle Scholar
  16. 16.
    Schützhold, R.: Quantum back-reaction problems, arXiv:0712.1429 (2007)
  17. 17.
    Dewitt, B.S.: Quantum theory of gravity. I. The canonical theory. Phys. Rev. 160, 1113 (1967)ADSCrossRefMATHGoogle Scholar
  18. 18.
    Maldacena, J.: The gauge gravity duality, arXiv:1106.6073(2012)
  19. 19.
    Giné, J.: Towards a quantum universe. Astrophys. Space Sci. 339, 25 (2012)ADSCrossRefMATHGoogle Scholar
  20. 20.
    Padmanabhan, T.: Thermodynamical aspects of gravity: New insights. Repo. Progress Phys. 046901, 73 (2010)Google Scholar
  21. 21.
    Padmanabhan, T.: Equipartition of energy in the horizon degrees of freedom and the emergence of gravity. Modern Phys. Lett. A 25, 1129 (2010)ADSMathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Verlinde, E: On the origin of gravity and the laws of Newton. J. High Energy Phys. 4, 29 (2011)ADSMathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Mostafazadeh, A.: Pseudo-Hermitian representation of quantum mechanics. Int. J. Geom. Methods Modern Phys. 07(07), 1191 (2011). arXiv:0810.5643v4 MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Bagchi, B., Quesne, C., Roychoudhury, R.: Pseudo-Hermitian versus Hermitian position-dependent-mass Hamiltonians in a perturbative framework. J. Phys. A: Math. Gen. 39(6), L127 (2006). arXiv:quant-ph/0511182 ADSMathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Mostafazadeh, A., Batal, A.: Physical aspects of pseudo-Hermitian and PT-symmetric quantum mechanics. J. Phys. A: Math. Gen. 37(48), 11645 (2004). arXiv:quant-ph/0408132v1 ADSMathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Jones, H.F.: On pseudo-Hermitian Hamiltonians and their Hermitian counterparts, vol. 38. arXiv:quant-ph/0411171v1 (2004)
  27. 27.
    Schrödinger, E.: An undulatory theory of the mechanics of atoms and molecules. Phys. Rev. 28, 1049 (1926)ADSCrossRefMATHGoogle Scholar
  28. 28.
    von Neumann, J.: Thermodynamik quantenmechanischer Grossen. Gott. Nachr. 273 (1927)Google Scholar
  29. 29.
    Araki, H., Lieb, E.: Entropy inequalities. Commun. Math. Phys. 18, 160 (1970)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    Milburn, G.J.: Intrinsic decoherence in quantum mechanics. Phys. Rev. A 44, 5401 (1991)ADSCrossRefGoogle Scholar
  31. 31.
    Moya-Cessa, H., Buzek, V., Kim, M.S., Knight, P.L.: Intrinsic decoherence in the atom-field interaction. Phys. Rev. A 48, 3900 (1993)ADSCrossRefGoogle Scholar
  32. 32.
    Moya-Cessa, H.: Decoherence in atom-field interactions: a treatment using superoperator techniques. Phys. Rep. 432, 1 (2006)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    Myatt, C.J., King, B.E., Turchette, Q.A., Sackett, C.A., Kiepinski, D., Itano, W.M., Wineland, D.J.: Decoherence of quantum superpositions through coupling to engineered reservoirs. Nature 403, 269 (2000)ADSCrossRefGoogle Scholar
  34. 34.
    Vidiella-Barranco, A., Moya-Cessa, H.: Nonextensive approach to decoherence in quantum mechanics. Phys. Lett. A 279, 56 (2001)ADSCrossRefMATHGoogle Scholar
  35. 35.
    Tsallis, C.: Possible generalization of Bolt Ann-Gibbs statistics. J. Stat. Phys. 52, 479 (1988)ADSCrossRefMATHGoogle Scholar
  36. 36.
    Tsallis, C.: Nonextensive statistics: Theoretical, experimental and computational evidences and connections. Braz. J. Phys. 29, 1 (1999)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Instituto Nacional de AstrofísicaÓptica y ElectrónicaPueblaMéxico
  2. 2.ESFM, Departamento de FísicaInstituto Politécnico NacionalCiudad de MéxicoMéxico
  3. 3.Oliver L. Benediktson Endowed Chair in Astrophysics, Department of Physics & AstrophysicsUniversity of North DakotaGrand ForksUSA

Personalised recommendations