Advertisement

International Journal of Theoretical Physics

, Volume 56, Issue 3, pp 751–756 | Cite as

Gravity-Induced Four-Fermion Contact Interaction Implies Gravitational Intermediate W and Z Type Gauge Bosons

  • Jens Boos
  • Friedrich W. Hehl
Article

Abstract

Coupling fermions to gravity necessarily leads to a non-renormalizable, gravitational four-fermion contact interaction. In this essay, we argue that augmenting the Einstein–Cartan Lagrangian with suitable kinetic terms quadratic in the gravitational gauge field strengths (torsion and curvature) gives rise to new, massive propagating gravitational degrees of freedom. This is to be seen in close analogy to Fermi’s effective four-fermion interaction and its emergent W and Z bosons.

Keywords

Gravity as a gauge theory Four-fermion contact interaction Effective field theory 

Notes

Acknowledgments

Research at Perimeter Institute is supported by the Government of Canada through Industry Canada and by the Province of Ontario through the Ministry of Research and Innovation.

References

  1. 1.
    Blagojević, M., Hehl, F.W. (eds.): Gauge Theories of Gravitation—A Reader with Commentaries, foreword by T .W. B. Kibble. Imperial College Press, London (2013). see arXiv:1210.3775
  2. 2.
    Popławski, N.J.: Nonsingular, big-bounce cosmology from spinor-torsion coupling. Phys. Rev. D 85, 107502 (2012). arXiv:1111.4595 ADSCrossRefGoogle Scholar
  3. 3.
    Magueijo, J., Zlosnik, T.G., Kibble, T.W.B.: Cosmology with a spin. Phys. Rev. D 87, 063504 (2013). arXiv:1212.0585
  4. 4.
    Khriplovich, I.B., Rudenko, A.S.: Gravitational four-fermion interaction and dynamics of the early Universe. JHEP 1311, 174 (2013). arXiv:1303.1348
  5. 5.
    Anandan, J.: Topological and geometrical phases due to gravitational field with curvature and torsion. Phys. Lett. A 195, 284 (1994)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Ni, W.T.: Searches for the role of spin and polarization in gravity. Rept. Prog. Phys. 73, 056901 (2010). arXiv:0912.5057
  7. 7.
    Vollhardt, D., Wölfle, P.: The Superfluid Phases of Helium 3, corr. ed. of 1990. Dover, Mineaola (2013)Google Scholar
  8. 8.
    Volovik, G.E.: The Universe in a Helium Droplet (2003)Google Scholar
  9. 9.
    Mukhanov, V.: Colloquium at Bonn University. Germany (2013)Google Scholar
  10. 10.
    Sezgin, E., van Nieuwenhuizen, P.: New ghost free gravity Lagrangians with propagating torsion. Phys. Rev. D 21, 3269 (1980)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Kuhfuss, R., Nitsch, J.: Propagating modes in gauge field theories of gravity. Gen. Rel. Grav. 18, 1207 (1986)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Shie, K.-F., Nester, J.M., Yo, H.-J.: Torsion cosmology and the accelerating universe. Phys. Rev. D 78, 023522 (2008). arXiv:0805.3834
  13. 13.
    Bjorken, J.D.: Emergent photons and gravitons: The problem of vacuum structure. arXiv:1008.0033
  14. 14.
    Boos, J.: Plebański-Demiański solution of general relativity and its expressions quadratic and cubic in curvature: Analogies to electromagnetism. Int. J. Mod. Phys. D 24, 1550079 (2015). arXiv:1412.1958
  15. 15.
    Popławski, N.J.: Torsion as electromagnetism and spin. Int. J. Theor. Phys. 49, 1481 (2010). arXiv:0905.4284
  16. 16.
    Donoghue, J.F.: Is the spin connection confined or condensed? arXiv:1609.03523

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Perimeter Institute for Theoretical PhysicsWaterlooCanada
  2. 2.Department of Physics & AstronomyUniversity of WaterlooWaterlooCanada
  3. 3.Institute for Theoretical PhysicsUniversity of CologneKölnGermany
  4. 4.Department of Physics & AstronomyUniversity of MissouriColumbiaUSA

Personalised recommendations