Advertisement

International Journal of Theoretical Physics

, Volume 55, Issue 10, pp 4406–4411 | Cite as

Seeing Wave-Particle Superposition with Cavity Input-Output Process

Article
  • 103 Downloads

Abstract

We present an experimental protocol to implement quantum delay-choice experiment in the context of cavity input-output process. In our protocol, the single-atom is employed as ancillary qubit to test the wave-particle feature of a single photon. With the cavity input-output process, we show that the controlled phase shift gate between single-atom and single-photon can be naturally used to generate the controlled Hadamard gate, which thus allows us to construct the quantum circuit for realizing the quantum delay-choice experiment. We also demonstrate the photonic wavelike and particlelike states can be simultaneously observed in our platform. Our protocol may open a new prospect using cavity quantum electrodynamics system to study some counterintuitive fundamental phenomenons in quantum mechanics.

Keywords

Wave-particle Cavity input-output process 

References

  1. 1.
    Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press, Cambridge (2004)CrossRefzbMATHGoogle Scholar
  2. 2.
    Bohr, N.: Quantum Theory and Measurement. In: Wheeler, J.A., Zurek, W.H. (eds.), p. 9C49. Princeton University Press, Princeton (1984)Google Scholar
  3. 3.
    Brandenburger, A., Yanofsky, N.A.: Classification of hidden-variable properties. J. Phys. A 41, 425302 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Wheeler, J.A.: Mathematical Foundations of Quantum Mechanics. In: Marlow, A.R. (ed.), p. 9C48. Academic, New York (1978)Google Scholar
  5. 5.
    Wheeler, J.A.: Quantum Theory and Measurement. In: Wheeler, J.A., Zurek, W.H. (eds.), p. 182C213. Princeton University Press, Princeton (1984)Google Scholar
  6. 6.
    Ionicioiu, R., Terno, D.R.: Phys. Rev. Lett 107, 230406 (2011)Google Scholar
  7. 7.
    Ma, X.S., Kofler, J., Zeilinger, A.: Rev. Mod. Phys 88, 015005 (2016)Google Scholar
  8. 8.
    Tang, J.S., Li, Y.L., Li, C.F., Guo, G.C.: Nat. Photonics 6, 600 (2012)Google Scholar
  9. 9.
    Kaiser, F., Coudreau, T., Milman, P., Ostrowsky, D.B., Tanzilli, s.: Science 338, 637 (2012)Google Scholar
  10. 10.
    Peruzzo, A., Shadbolt, P., Brunner, N., Popescu, S., Brien, J.L.O.: Science 338, 634 (2012)Google Scholar
  11. 11.
    Yan, H., Liao, K., Deng, Z., He, J., Xue, Z.Y., Zhang, Z.M., Zhu, S.L.: Phys. Rev. A 91, 042132 (2015)Google Scholar
  12. 12.
    Zheng, S.B., etal: Phys. Rev. Lett 115, 260403 (2015)Google Scholar
  13. 13.
    Duan, L.-M., Kimble, H.J.: Phys. Rev. Lett 92, 127902 (2004)Google Scholar
  14. 14.
    Mei, F., et al.: Phys. Rev. A. 80, 042319 (2009)Google Scholar
  15. 15.
    Mei, F., et al.: Phys. Rev. A. 82, 052315 (2010)Google Scholar
  16. 16.
    Mei, F., et al.: Europhysics Lett. 91, 10001 (2010)Google Scholar
  17. 17.
    Knill, E., Laflamme, R., Milburn, G.J.: Nature (London) 409, 46 (2001)Google Scholar
  18. 18.
    Reiserer, A., Kalb, N., Rempe, G., Ritter, S.: Nature (London) 508, 237 (2014)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.China Telecom Co., Ltd. Guangdong BranchGuangzhouChina

Personalised recommendations