Advertisement

International Journal of Theoretical Physics

, Volume 55, Issue 10, pp 4331–4361 | Cite as

Confusion in Cosmology and Gravitation

  • C. Corda
  • R. Katebi
  • N. O. Schmidt
Article

Abstract

In a series of papers, Santilli and collaborators released various strong statements against the general theory of relativity (GTR) and the standard ΛCDM model of cosmology. In this paper we show that such claims are due to misunderstandings of basic concepts of gravitation and cosmology. In particular, we show that Santilli and collaborators demonstrated neither that the GTR is wrong, nor that the Universe is not expanding. We also show that the so-called iso-gravitation theory (IGT) of Santilli is in macroscopic contrast with geodesic motion and, in turn, with the Equivalence Principle (EP) and must therefore be ultimately rejected. Finally, we show that, although the so called iso-redshift could represent an interesting alternative (similar to the tired light theory historically proposed by Zwicky) to the Universe expansion from a qualitative point of view, it must be rejected from a quantitative point of view because the effect of iso-redshift is 10−6 smaller than the effect requested to achieve the cosmological redshift.

Keywords

Gravitation Cosmology Equivalence principle Expansion of the universe 

Notes

Acknowledgments

Christian Corda thanks Mr. Ruggero M. Santilli and collaborators for asking him to write a paper criticizing Santilli’s studies in gravitation and cosmology. The authors thank the unknown referees for useful comments.

Compliance with Ethical Standards

Author Contributions

The authors declare that each of them contributed in equal way to realize this paper.

Conflict of interests

The authors declare that there is no conflict of interests regarding the publication of this article.

References

  1. 1.
    Santilli, R.M.: arXiv:physics/0611253v1
  2. 2.
    Santilli, R.M.: Isotopic Generalizations of Galilei’s and Einstein’s Relativities. Vol. I “Mathematical Foundations” and Vol. II “Classical Formulations”. Hadronic Press Inc., Palm Harbor (1991)Google Scholar
  3. 3.
    Santilli, R.M.: Found. Phys. Lett. 10, 307 (1997)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Santilli, R.M.: arXiv:physics/9705016v1
  5. 5.
    Santilli, R.M.: Isodual theory of antimatter. Fundamental Theories of Physics 151, Springer, Dordrecht (2006)Google Scholar
  6. 6.
    Santilli, R.M.: Gal. Electr. 17, 4 (2006)Google Scholar
  7. 7.
    Will, C.M.: Living Rev. Relativ. 9, 3 (2006)Google Scholar
  8. 8.
    Freud, P.: Ann. Math. 40, 417 (1939)Google Scholar
  9. 9.
    Notte-Cuello, E.A., Rodrigues, Jr, W.A.: Adv. Appl. Cliff. Alg. 19(1), 113 (2009)Google Scholar
  10. 10.
    Landau, L., Lifsits, E.: Classical theory of fields, 3rd edn. Pergamon, London (1971)Google Scholar
  11. 11.
  12. 12.
  13. 13.
    Weinberg, S.: Gravitation and cosmology: principles and applications of the general theory of relativity. Wiley (1972)Google Scholar
  14. 14.
    Baessler, S., et al.: Class. Quantum Gravity 18(13), 2393 (2001)ADSCrossRefGoogle Scholar
  15. 15.
    Baessler, S., et al.: Phys. Rev. Lett. 83, 3585 (1999)ADSCrossRefGoogle Scholar
  16. 16.
    Von Eötvös, R.: Math. Naturwiss. Ber. Ung. 8, 65 (1890). in German)Google Scholar
  17. 17.
    Iorio, L.: Universe 1, 38 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    Santilli, R.M.: AIP Proc. 1281, 882 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    Santilli, R.M., West, G., Amato, G.: J. Comp. Met. Scien. Eng. 12, 165 (2012)Google Scholar
  20. 20.
    Ahmar, H., Amato, G., Kadeisvili, J.V., Manuel, J., West, G., Zogorodnia, O.: J. Comp. Met. Scien. Eng. 13, 321 (2013)MathSciNetGoogle Scholar
  21. 21.
  22. 22.
    Santilli, R.M.: Am. J. Mod. Phys. 4(2), 26 (2015)CrossRefGoogle Scholar
  23. 23.
  24. 24.
    Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. W.H. Feeman and Co. (1973)Google Scholar
  25. 25.
    Zwicky, F.: Proc. Nat. Ac. Sci. 15(10), 773 (1929)ADSCrossRefGoogle Scholar
  26. 26.
    Nordström, G.: Phys. Zeit. 13, 1126 (1912)Google Scholar
  27. 27.
    Nordström, G.: Ann. Phys. Lpz. 42, 533 (1913)ADSCrossRefGoogle Scholar
  28. 28.
    Nordström, G.: Ann. d. Phys. 42, 533 (1913)ADSCrossRefGoogle Scholar
  29. 29.
    Corda, C.: New Adv. Phys. 7, 85 (2013)Google Scholar
  30. 30.
    Einstein, A.: Preuss. Akad. Wiss. Berlin, Sitzber. 778 (1915)Google Scholar
  31. 31.
    Corda, C.: Int. J. Mod. Phys. D 18(14), 2275 (2009)ADSCrossRefGoogle Scholar
  32. 32.
    Nojiri, S., Odintsov, S.D.: Int. J. Geom. Meth. Mod. Phys. 4, 115–146 (2007)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Nojiri, S., Odintsov, S.D.: Phys. Rep. 505, 59 (2011)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    Starobinsky, A.: Phys. Lett. B 91, 99–102 (1980)ADSCrossRefGoogle Scholar
  35. 35.
    Pais, A.: Subtle is the lord. Oxford University Press (2005)Google Scholar
  36. 36.
    Riess, A.G., et al.: Astron. J. 116, 1009 (1998)ADSCrossRefGoogle Scholar
  37. 37.
    Perlmutter, S., et al.: Astrop. J. 517, 565 (1999)ADSCrossRefGoogle Scholar
  38. 38.
    Cole, S., et al.: MNRAS 362, 505 (2005)ADSCrossRefGoogle Scholar
  39. 39.
    Spergel, D.N., et al.: Astrop. J. Supp. 170, 377 (2007)ADSCrossRefGoogle Scholar
  40. 40.
    Peebles, P.J.E., Ratra, B.: Rev. Mod. Phys. 75, 8559 (2003)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Will, C.M.: Theory and Experiments in Gravitational Physics. Cambridge University Press, Cambridge (1993)Google Scholar
  42. 42.
    Brans, C., Dicke, R.H.: Phys. Rev. 124, 925 (1961)ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    Froeschlé, M., Mignard, F., Arenou, F.. In: Proceedings of Hipparcos Venice ’97 Symposium. ESA, Noordwijk (1997)Google Scholar
  44. 44.
    Roll, P.G., Krotkov, R., Dicke, R.H.: Ann. Phys. 26, 442 (1964)ADSMathSciNetCrossRefGoogle Scholar
  45. 45.
    Braginski, B.V., Panov, V.I.: J. Exp. Theor. Phys. 61, 873 (1971)Google Scholar
  46. 46.
    Santilli, R.: talk at the 12th International Conference of Numerical Analysis and Applied Mathematics, September 20154, Rodos Palace Hotel, Rhodes, GreeceGoogle Scholar
  47. 47.
    Cox, R.: Hadr. J. 35, 389 (2012)Google Scholar
  48. 48.
    Schwarzschild, K.: Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.) 189 (1916)Google Scholar
  49. 49.
    Ridgely, C.: Eur. J. Phys. 31, 949 (2010)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Corda, C.: EJTP 8(25), 65 (2011)Google Scholar
  51. 51.
  52. 52.
    Schwarzschild, K.: Sitz. Preu. Akad. Wiss. Berlin (Math. Phys.) 189 (1916)Google Scholar
  53. 53.
    Reissner, H.: Ann. Phys. 50, 106 (1916)CrossRefGoogle Scholar
  54. 54.
    Nordström, G.: Ver. Ko . Ned. Akad. Wet., Afdel. Natuurk. 26, 1201. (Amsterdam 1918)Google Scholar
  55. 55.
    Bondi, H., Pirani, F.A.E., Robinson, I.: Proc. R. Soc. Lond. A 251, 519 (1959)ADSMathSciNetCrossRefGoogle Scholar
  56. 56.
    Oppenheimer, J.R., Volkov, G.B.: Phys. Rev. 55(4), 374 (1939)ADSCrossRefGoogle Scholar
  57. 57.
    Boonserm, P., Visser, M., Weinfurtner, S.: Phys. Rev. D 124037, 71 (2005)MathSciNetGoogle Scholar
  58. 58.
    Private communications with R. M. SantilliGoogle Scholar
  59. 59.
    Santilli, R.M.: Special issue: Issue I: Foundations of hadronic mathematics. Am. J. Modern Phys. 4(5-1), 59–75 (2015)Google Scholar
  60. 60.
    Schwarzschild, K.: Sitz. Preu. Akad. Wiss. Berlin (Math. Phys.) 424 (1916)Google Scholar
  61. 61.
    Corda, C.: Ann. Phys. 355, 360 (2015)ADSMathSciNetCrossRefGoogle Scholar
  62. 62.
    Santilli, R.M.: Comment at the 12th International Conference of Numerical Analysis and Applied Mathematics, 22–28 (2014)Google Scholar
  63. 63.
    Kholmetskii, A.L., Yarmanb, T., Arikc, M., Missevitchd, O.V.: AIP Conf. Proc. 1648, 510011 (2015)CrossRefGoogle Scholar
  64. 64.
    Kündig, W.: Phys. Rev. 129, 2371 (1963)ADSCrossRefGoogle Scholar
  65. 65.
    Kholmetskii, A.L., Yarman, T., Missevitch, O.V.: Phys. Scr. 77, 035302 (2008)ADSCrossRefGoogle Scholar
  66. 66.
    Kholmetskii, A.L., Yarman, T., Missevitch, O.V., Rogozev, B.I.: Phys. Scr. 79, 065007 (2009)ADSCrossRefGoogle Scholar
  67. 67.
    Mössbauer, R.L.: Zeitschrift für Physik A (in German) 151, 124 (1958)ADSCrossRefGoogle Scholar
  68. 68.
    The BICEP2 Collaboration: Phys. Rev. Lett. 112, 241101 (2014)Google Scholar
  69. 69.
    The Planck Collaboration, Astronomy Astrophysics. doi: 10.1051/0004-6361/201425034 (2015)
  70. 70.
    Corda, C.: Gen. Rel. Grav. 42, 1323 (2010)ADSMathSciNetCrossRefGoogle Scholar
  71. 71.
    Corda, C.: Erratum-ibid 42, 1335 (2010)ADSMathSciNetGoogle Scholar
  72. 72.
    Hulse, R.A., Taylor, J.H.: Astrop. J. Lett. 195, L51 (1975)ADSCrossRefGoogle Scholar
  73. 73.
    Giazotto, A.: J. Phys. Conf. Series 120, 032002 (2008)ADSCrossRefGoogle Scholar
  74. 74.
    Einstein, A.: Sitzun. Pre. Akad. Wiss. Berlin (Math. Phys.) 142 (1917)Google Scholar
  75. 75.
    Friedmann, A.: Zeit. Phys. 21, 326 (1924)ADSMathSciNetCrossRefGoogle Scholar
  76. 76.
    Hubble, E.: Sci, Proc. Nat. Acad. USA 15, 168 (1929)ADSCrossRefGoogle Scholar
  77. 77.
    Lemaître, G.: Ann. Soc. Sci. de Brux. 47, 49 (1927)Google Scholar
  78. 78.
    Lemaître, G.: English translation in G. Lemaître, MNRAS 91(1931), 483Google Scholar
  79. 79.
    Robertson, H.P.: Phil. Mag. Series 7,5,31, 835 (1928)CrossRefGoogle Scholar
  80. 80.
    Walker, A.G.: Proc. London Math. Soc. s2-42(1), 90 (1937)CrossRefGoogle Scholar
  81. 81.
    Gamow, G.: My World Line : An Informal Autobiography. Hardcover (1970)Google Scholar
  82. 82.
    Mitton, S.: Fred Hoyle a life in science. Cambridge University Press (2011)Google Scholar
  83. 83.
    Hoyle, F.: MNRAS 108, 372 (1948)ADSCrossRefGoogle Scholar
  84. 84.
    Gold, T., Bondi, H.: MNRAS 108, 252 (1948)ADSCrossRefGoogle Scholar
  85. 85.
    Hoyle, F., Narlikar, J.V.: MNRAS 123, 133 (1961)ADSCrossRefGoogle Scholar
  86. 86.
    Keel, W.C.: The Road to Galaxy Formation, 2nd edn. Springer-Praxis (2007)Google Scholar
  87. 87.
    Scrimgeour, M.I., et al.: MNRAS 425, 116 (2012)ADSCrossRefGoogle Scholar
  88. 88.
    Karagiorgi, G., Aguilar-Arevalo, A., Conrad, J.M., Shaevitz, M.H., Whisnant, K., Sorel, M., Barger, V.: Phys. Rev. D 75, 013011 (2007)ADSCrossRefGoogle Scholar
  89. 89.
    Goobar, A., Hannestad, S., Mörtsell, E., Tu, H.: JCAP 06, 019 (2006)ADSCrossRefGoogle Scholar
  90. 90.
    Macdonald, A.: General Relativity in a Nutshell. Luther College (2012)Google Scholar
  91. 91.
    The Planck Collaboration, A&A, 571, A1 (2014)Google Scholar
  92. 92.
    The Planck Collaboration, A&A, 571 (2014)Google Scholar
  93. 93.
    Corda, C., Mosquera Cuesta, H.: Astropart. Phys. 34, 587 (2011)ADSCrossRefGoogle Scholar
  94. 94.
    Schmidt, B.G.: Gen. Rel. Grav. 1, 269 (1971)ADSCrossRefGoogle Scholar
  95. 95.
    Aczel, A.D.: God’s Equation: Einstein, Relativity, and the Expanding Universe. Four Walls Eight Windows (1999)Google Scholar
  96. 96.
    Carroll, B.W., Ostlie, D.A.: An introduction to modern astrophysics, 2nd edn. Pearson Eduction, Inc (2007)Google Scholar
  97. 97.
    Krauss, L.M., Scherrer, R.J.: Gen. Rel. Grav. 39, 1545 (2007)ADSMathSciNetCrossRefGoogle Scholar
  98. 98.
    Lineweaver, C.H., Davis, T.M.: Scient. Am. 292(3), 36 (2005)CrossRefGoogle Scholar
  99. 99.
    Loeb, A.: Phys. Rev. D 65, 047301 (2002)ADSCrossRefGoogle Scholar
  100. 100.
    Fixsen, D.J.: Astrophys. J. 707, 916 (2009)ADSCrossRefGoogle Scholar
  101. 101.
    Gupta, A., Galeazzi, M., Ursino, E.: Bull. Am. Astron. Soc. 41, 908 (2010)ADSGoogle Scholar
  102. 102.
    Zeilik, M.A., Gregory, S.A.: Introductory Astronomy & Astrophysics, 4th edn. Saunders College Publishing (1998)Google Scholar
  103. 103.
    Gandzha, I.: Hadr. J. 35(4), 379 (2012)Google Scholar
  104. 104.
    Crawford, D.F.: Aust. J. Phys. 40, 459 (1987)ADSGoogle Scholar
  105. 105.
    Rogerson, J.A., Hall, P.B., Snedden, S.A., Brotherton, M.S., Anderson, S.F.: New Astr. 16, 128 (2011)ADSCrossRefGoogle Scholar
  106. 106.
    Santilli, R.M.: Foundations of hadronic chemistry: With applications to new clean energies and fuels. Springer Science & Business Media 120 (2001)Google Scholar
  107. 107.
    Pandhurnekar, C.P.: AIP Conf. Proc. 1648, 510015 (2015)CrossRefGoogle Scholar
  108. 108.
    Yang, Y., Kadeisvili, J.V., Marton, S.: Int. J. Hydr. En. 38(12), 5003 (2013)CrossRefGoogle Scholar
  109. 109.
    Santilli, R.M.: Method and Apparatus for the Industrial Production of New Hydrogen-Rich Fuels, US Patent App. 14/244,229 Google Patents (2014)Google Scholar
  110. 110.
    Santilli, R.M.: Method and apparatus for intermediate controlled fusion processes, US Patent App. 13/197,836 Google Patents (2011)Google Scholar
  111. 111.
    Kadeisvili, J.V., Lynch, C., Yang, Y.: Op. Phys. Chem. J. 5, 17 (2013)Google Scholar
  112. 112.
    Santilli, R.M.: Experimental confirmation of the novel ’Intermediate Controlled Nuclear Fusion’ without harmful radiations, New Advances in Physics (2010)Google Scholar
  113. 113.
    Bamba, K., Odintsov, S.D.: Symmetry 7(1), 220 (2015)MathSciNetCrossRefGoogle Scholar
  114. 114.
    Santilli, R.M.: Int. J. Mod. Phys. D 07(03), 351 (1998)ADSMathSciNetCrossRefGoogle Scholar
  115. 115.
    Corda, C.: Ann. Phys. 368, 258 (2016)ADSMathSciNetCrossRefGoogle Scholar
  116. 116.
    Abbott, B., et al.: LIGO Scientific Collaboration and Virgo Collaboration. Phys. Rev. Lett. 116, 061102 (2016)ADSCrossRefGoogle Scholar
  117. 117.
    Einstein, A.: Sitzungsber. K. Preuss. Akad. Wiss. 1, 688 (1916)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Dipartimento di FisicaScuola Superiore di Studi Universitari e ”Ricerca Santa Rita”RomaItaly
  2. 2.Austro-Ukrainian Institute for Science and Technology, Institut für Theoretishe PhysikTechnische UniversitätWienAustria
  3. 3.International Institute for Applicable Mathematics & Information Sciences (IIAMIS), B.M. Birla Science CentreAdarsh NagarIndia
  4. 4.Department of Physics and AstronomyOhio UniversityAthensUSA
  5. 5.Department of MathematicsBoise State UniversityBoiseUSA

Personalised recommendations