International Journal of Theoretical Physics

, Volume 55, Issue 9, pp 3832–3842 | Cite as

Non-signalling Theories and Generalized Probability

Article

Abstract

We provide mathematically rigorous justification of using term probability in connection to the so called non-signalling theories, known also as Popescu’s and Rohrlich’s box worlds. No only do we prove correctness of these models (in the sense that they describe composite system of two independent subsystems) but we obtain new properties of non-signalling boxes and expose new tools for further investigation. Moreover, it allows strightforward generalization to more complicated systems.

Keywords

Quantum logics Non-signaling models Non-classical probability 

References

  1. 1.
    Popescu, S., Rohrlich, D.: Found. Phys. 24(3), 379 (1994)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Acín, A., Gisin, N., Masanes, L.: Phys. Rev. Lett. 97, 120405 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    Brassard, G., Buhrman, H., Linden, N., Méthot, A., Tapp, A., Unger, F.: Phys. Rev. Lett. 96, 250401 (2006)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Barrett, J.: Phys. Rev. A 75(3), 032304 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    Barrett, J., Linden, N., Massar, S., Pironio, S., Popescu, S., Roberts, D.: Phys. Rev. A 71(2), 022101 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    Pták, P., Pulmannová, S.: . In: Handbook of Quantum Logic and Quantum Structures, pp. 147–213, Elsevier (2007)Google Scholar
  7. 7.
    Barnum, H., Barrett, J., Leifer, M., Wilce, A.: Phys. Rev. Lett. 99(24), 240501 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    Mielnik, B.: Commun. Math. Phys. 37(3), 221 (1974)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Birkhoff, G., Von Neumann, J.: Ann. Math. 37(4), 823 (1936)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Piron, C.: Foundations of Quantum Physics. WA Benjamin, Inc., Reading (1976)CrossRefMATHGoogle Scholar
  11. 11.
    Hilbert, D.: Bull. Amer. Math. Soc. 8, 437 (1902)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Pták, P., Pulmannová, S.: Orthomodular Structures as Quantum Logics: Intrinsic Properties, State Space and Probabilistic Topics, vol. 44. Springer (1991)Google Scholar
  13. 13.
    Tylec, T., Kuś, M.: J. Phys. A Math. Theor. 48(50), 505303 (2015)CrossRefGoogle Scholar
  14. 14.
    Coecke, B.: EPTCS, 172 (2014). arViv:1405.3681
  15. 15.
    Barnum, H., Barrett, J., Leifer, M., Wilce, A.: arXiv:quant-ph/0611295 (2006)

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Center for Theoretical PhysicsPolish Academy of SciencesWarsawPoland
  2. 2.Faculty of PhysicsUniversity of WarsawWarsawPoland
  3. 3.Institute of Theoretical Physics and AstrophysicsUniversity of GdańskGdańskPoland

Personalised recommendations