International Journal of Theoretical Physics

, Volume 55, Issue 5, pp 2500–2528 | Cite as

Outline of a Generalization and a Reinterpretation of Quantum Mechanics Recovering Objectivity

  • Claudio Garola
  • Sandro Sozzo
  • Junde Wu


The ESR model has been recently proposed in several papers to offer a possible solution to the problems raising from the nonobjectivity of physical properties in quantum mechanics (QM) (mainly the objectification problem of the quantum theory of measurement). This solution is obtained by embodying the mathematical formalism of QM into a broader mathematical framework and reinterpreting quantum probabilities as conditional on detection rather than absolute. We provide a new and more general formulation of the ESR model and discuss time evolution according to it, pointing out in particular that both linear and nonlinear evolution may occur, depending on the physical environment.


Quantum mechanics ESR model Quantum measurements Evolution 



This work was supported by the Natural Science Foundations of China (11171301 and 10771191) and by the Doctoral Programs Foundation of Ministry of Education of China (J20130061).


  1. 1.
    Ballentine, L.E.: The statistical interpretation of quantum mechanics. Rev. Mod. Phys. 42, 358–381 (1970)ADSCrossRefMATHGoogle Scholar
  2. 2.
    Busch, P., Lahti, P.J., Mittelstaedt, P.: The Quantum Theory of Measurement. Springer, Berlin (1996)MATHGoogle Scholar
  3. 3.
    Ludwig, G.: Foundations of Quantum Mechanics I. Springer, Berlin (1983)CrossRefMATHGoogle Scholar
  4. 4.
    Mermin, N.D.: Hidden variables and the two theorems of John Bell. Rev. Mod. Phys. 65, 803–815 (1993)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Bell, J.S.: On the problem of hidden variables in quantum mechanics. Rev. Mod. Phys. 38, 447–452 (1966)ADSMathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Kochen, S., Specker, E.P.: The problem of hidden variables in quantum mechanics. J. Math. Mech. 17, 59–87 (1967)MathSciNetMATHGoogle Scholar
  7. 7.
    Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics 1, 195–200 (1964)Google Scholar
  8. 8.
    Aspect, A., Grangier, P., Roger, G.: Experimental realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment: a new violation of Bell’s inequalities. Phys. Rev. Lett. 49, 91–94 (1982)ADSCrossRefGoogle Scholar
  9. 9.
    Aspect, A., Dalibard, J., Roger, G.: Experimental test of Bell’s inequalities using time-varying analyzers. Phys. Rev. Lett. 49, 1804–1807 (1982)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Genovese, M.: Research on hidden variables theories: a review of recent progresses. Phys. Repts. 413, 319–396 (2005)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    d’Espagnat, B.: Conceptual Foundations of Quantum Mechanics. Addison Wesley, New York (1976)Google Scholar
  12. 12.
    Timpson, C.G., Brown, H.R.: Proper and improper separability. Int. J. Quant. Inf. 3, 679–690 (2005)CrossRefMATHGoogle Scholar
  13. 13.
    Garola, C., Sozzo, S.: Extended representations of observables and states for a noncontextual reinterpretation of QM. J. Phys. A: Math. Theor. 45, 075303 (2012)ADSMathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Dalla Chiara, M.L., Giuntini, R., Greechie, R.: Reasoning in quantum theory. Kluwer, Dordrecht (2004)CrossRefMATHGoogle Scholar
  15. 15.
    Bohm, D.: A suggested interpretation of quantum theory in terms of “hidden variables”. Phys. Rev. 85, 166–179 (1952)ADSMathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Zeilinger, A.: A foundational principle for quantum mechanics. Found. Phys. 29, 631–643 (1999)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Clifton, R., Bub, J., Halvorson, H.: Characterizing quantum theory in terms of information theoretic constraints. Found. Phys. 33, 1561 (2003)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Caves, C.M., Fuchs, C.A., Schack, R.: Conditions for compatibility of quantum state assignments. Phys. Rev. A 66(062111), 1–11 (2002)MathSciNetGoogle Scholar
  19. 19.
    Caves, C.M., Fuchs, C.A., Schack, R.: Unknown quantum states: the quantum de Finetti representation. J. Math. Phys. 43, 4537–4559 (2002)ADSMathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Fuchs, C.A., Schack, R.: Unknown quantum states and operations, a Bayesian view. Lect. Not. Phys. 649, 147–187 (2004)ADSMathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Garola, C., Pykacz, J.: Locality and measurements within the SR model for an objective interpretation of quantum mechanics. Found. Phys. 34, 449–475 (2004)ADSMathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Garola, C., Persano, M.: Embedding quantum mechanics into a broader noncontextual theory. Found. Sci. 19, 217–239 (2014)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Garola, C., Solombrino, L.: The theoretical apparatus of semantic realism: a new language for classical and quantum physics. Found. Phys. 26, 1121–1164 (1996)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Garola, C., Solombrino, L.: Semantic realism versus EPR-like paradoxes: the Furry, Bohm-Aharonov, and Bell paradoxes. Found. Phys. 26, 1329–1356 (1996)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    Garola, C.: A simple model for an objective interpretation of quantum mechanics. Found. Phys. 32, 1597–1615 (2002)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Garola, C., Sozzo, S.: Realistic aspects in the standard interpretation of quantum mechanics. Humana.mente. J. Phil. Stud. 13, 81–101 (2010)Google Scholar
  27. 27.
    Garola, C.: Embedding quantum mechanics into an objective framework. Found. Phys. Lett. 16, 605–612 (2003)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Garola, C.: The ESR model: reinterpreting quantum probabilities within a realistic and local framework. In: Adenier, G., et al. (eds.) Quantum Theory: Reconsideration of Foundations-4, pp. 247–252. American Institute of Physics, Ser. Conference Proceedings 962, Melville (2007)Google Scholar
  29. 29.
    Sozzo, S.: Modified BCHSH inequalities within the ESR model. In: Adenier, G., et al. (eds.) Quantum Theory: Reconsideration of Foundations-4, pp. 334–338. American Institute of Physics, Ser. Conference Proceedings 962, Melville (2007)Google Scholar
  30. 30.
    Garola, C., Sozzo, S.: The ESR model: a proposal for a noncontextual and local Hilbert space extension of QM. Europhys. Lett. 86, 20009 (2009)ADSCrossRefGoogle Scholar
  31. 31.
    Garola, C., Sozzo, S.: Embedding quantum mechanics into a broader noncontextual theory: a conciliatory result. Int. J. Theor. Phys. 49, 3101–3117 (2010)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Sozzo, S., Garola, C.: A Hilbert space representation of generalized observables and measurement processes in the ESR model. Int. J. Theor. Phys. 49, 3262–3270 (2010)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Garola, C., Sozzo, S.: Generalized observables, Bell’s inequalities and mixtures in the ESR model for QM. Found. Phys. 41, 424–449 (2011)ADSMathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Garola, C., Sozzo, S.: The modified Bell inequality and its physical implications in the ESR model. Int. J. Theor. Phys. 50, 3787–3799 (2011)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Garola, C., Sozzo, S.: Representation and interpretation of quantum mixtures in the ESR model. Theor. Math. Phys. 168, 912–923 (2011)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Garola, C., Persano, M., Pykacz, J., Sozzo, S.: Finite local models for the GHZ experiment. Int. J. Theor. Phys. 53, 622–644 (2014)CrossRefMATHGoogle Scholar
  37. 37.
    Garola, C., Sozzo, S.: Recovering nonstandard logics within an extended classical framework. Erkenntnis 78, 399–419 (2013)MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Sozzo, S.: The quantum harmonic oscillator in the ESR model. Found. Phys. 43, 792–804 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Garola, C.: A survey of the ESR model for an objective reinterpretation of quantum mechanics. Int. J. Theor. Phys. 54, 4410–4422Google Scholar
  40. 40.
    Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880–884 (1969)ADSCrossRefGoogle Scholar
  41. 41.
    Greenberger, D.M., Horne, M.A., Shimony, A., Zeilinger, A.: Bells theorem without inequalities. Am. J. Phys. 58, 1131–1143 (1982)ADSMathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Beltrametti, E.G., Cassinelli, G.: The Logic of Quantum Mechanics. Addison-Wesley, Reading (1981)MATHGoogle Scholar
  43. 43.
    Braithwaite, R.B.: Scientific Explanation. Cambridge University Press, Cambridge (1953)MATHGoogle Scholar
  44. 44.
    Hempel, C.G.: Aspects of Scientific Explanation. Free Press, New York (1965)Google Scholar
  45. 45.
    Aerts, D.: Foundations of quantum physics: a general realistic and operational approach. Int. J. Theor. Phys. 38, 289–358 (1999)MathSciNetCrossRefMATHGoogle Scholar
  46. 46.
    Szabó, L.E., Fine, A.: A local hidden variable theory for the GHZ experiment. Phys. Lett. A 295, 229–240 (2002)ADSMathSciNetCrossRefMATHGoogle Scholar
  47. 47.
    von Neumann, J.: Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton (1932)MATHGoogle Scholar
  48. 48.
    Davies, E.B.: Quantum Theory of Open Systems. Academic Press, London (1976)MATHGoogle Scholar
  49. 49.
    Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)MATHGoogle Scholar
  50. 50.
    Santos, E.: The failure to perform a loophole-free test of Bells inequality supports local realism. Found. Phys. 34, 1643–1673 (2004)ADSMathSciNetCrossRefMATHGoogle Scholar
  51. 51.
    Santos, E.: Bell’s theorem and the experiments: increasing empirical support for local realism?. Stud. Hist. Philos. Mod. Phys. 36, 544–565 (2005)CrossRefMATHGoogle Scholar
  52. 52.
    Fine, A.: Some local models for correlation experiments. Synthese 50, 279–294 (1982)MathSciNetCrossRefGoogle Scholar
  53. 53.
    Fine, A.: Hidden variables, joint probability and the Bell inequalities. Phys. Rev. Lett. 48, 291–295 (1982)ADSMathSciNetCrossRefGoogle Scholar
  54. 54.
    Fine, A.: Correlations and efficiency; testing the Bell inequalities. Found. Phys. 19, 453–478 (1989)ADSCrossRefGoogle Scholar
  55. 55.
    Fine, A.: The Shaky Game: Einstein, Realism and the Quantum Theory. University of Chicago Press, Chicago (1994)Google Scholar
  56. 56.
    Accardi, L.: Some loopholes to save quantum nonlocality. In: Adenier, G., Khrennikov, A. (eds.) Foundations of Probability and Physics-3, pp. 1–20. American Institute of Physics, Ser. Conference Proceedings 750, Melville (2005)Google Scholar
  57. 57.
    Khrennikov, A.: Interpretations of Probability. De Gruyter, Berlin (1998, 2009)MATHGoogle Scholar
  58. 58.
    Khrennikov, A., Smolyanov, O.G., Truman, A.: Kolmogorov probability spaces describing Accardi models for quantum correlations. Open. Syst. Inf. Dyn. 12, 371–384 (2005)MathSciNetCrossRefMATHGoogle Scholar
  59. 59.
    Hess, K., Philipp, W.: Exclusion of time in Mermins proof of Bell-type inequalities. In: Khrennikov, A. (ed.) Quantum Theory: Reconsideration of Foundations-2, pp. 243–254. Växjö University Press, Ser. Math. Model. 10, Växjö (2003)Google Scholar
  60. 60.
    Hess, K., Philipp, W.: Bell’s theorem: critique of proofs with and without inequalities. In: Adenier, G., Khrennikov, A. (eds.) Foundations of Probability and Physics-3, pp. 150–155. American Institute of Physics, Ser. Conference Proceedings 750, Melville (2005)Google Scholar
  61. 61.
    Khrennikov, A: Quantum probabilities and violation of CHSH-inequality from classical random signals and threshold type detection scheme. Prog. Theor. Phys. 128, 31–58 (2012)ADSCrossRefMATHGoogle Scholar
  62. 62.
    Khrennikov, A.: Born’s rule from measurements of classical signals by threshold detectors which are properly calibrated. J. Mod. Opt. 59, 667–678 (2012)ADSCrossRefGoogle Scholar
  63. 63.
    Khrennikov, A.: Born’s rule from measurements of classical random signals under the assumption of ergodicity at the subquantum time scale. Op. Sys. Inf. Dyn. 19, 48–65 (2012)MathSciNetMATHGoogle Scholar
  64. 64.
    Adenier, G.: Violation of Bell inequalities as a violation of fair sampling in threshold detectors. In: Accardi, L., et al. (eds.) Foundations of Probability and Physics-5. pp. 8–18. American Institute of Physics, Ser. Conference Proceedings 1101, Melville (2009)Google Scholar
  65. 65.
    Khrennikov, A.: Towards new Grangier type experiments. Ann. Phys. 327, 1786–1802 (2012)ADSMathSciNetCrossRefMATHGoogle Scholar
  66. 66.
    Khrennikov, A.: Role of detectors and their proper calibration in inter-relation between classical and quantum optics. Opt. Eng. 51(6), 069001 (2012)ADSCrossRefGoogle Scholar
  67. 67.
    Khrennikov, A.: CHSH inequality: Quantum probabilities as classical conditional probabilities. arXiv:1406.4886v1 [quant-ph] (2014)
  68. 68.
    Khrennikov, A.: Unconditional quantum correlations do not violate Bell’s inequality. arXiv:1503.08016v1 [quant-ph] (2015)
  69. 69.
    Khrennikov, A.: Classical probabilistic realization of “Random Numbers Certified by Bell’s Theorem”. arXiv:1501.03581v1 [quant-ph] (2015)

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Mathematics and PhysicsUniversity of SalentoLecceItaly
  2. 2.School of Management and IQSCSUniversity of LeicesterLeicesterUK
  3. 3.Department of MathematicsZhejiang UniversityZhejiangPeople’s Republic of China

Personalised recommendations