International Journal of Theoretical Physics

, Volume 55, Issue 5, pp 2436–2454 | Cite as

Ether and Relativity

  • Mehrdad Farhoudi
  • Maysam Yousefian


We consider one of the fundamental debates in performing the relativity theory, namely, the ether and the relativity points of view, in a way to aid the learning of the subjects. In addition, we present our views and prospects while describing the issues that being accessible to many physicists and allowing broader views. Also, we very briefly review the two almost recent observations of the Webb redshift and the ultra high energy cosmic rays, and the modified relativity models that have been presented to justify them, wherein we express that these justifications have not been performed via a single model with a single mechanism.


Ether theory Relativity theory Absolute space Lorentz violation Varying speed of light Doubly special relativity 



We thank the Research Office of Shahid Beheshti University for the financial support.


  1. 1.
    Rindler, W.: Relativity: special, general and cosmological, 2nd Ed. Oxford University Press, Oxford (2006)zbMATHGoogle Scholar
  2. 2.
    Newton, I.: Philosophiæ Naturalis Principia Mathematica, 1st Ed. Streater, London (1687). Final Ed. in English by: A. Motte, 1729, Revised by: A. Cajori, “Sir Isaac Newton’s Mathematical Principles of Natural Philosophy and His System of the World”, (University of California Press, Berkeley, 1962)zbMATHGoogle Scholar
  3. 3.
    Michael, F.: Leibniz’s metaphysics of time and space. Springer, Heidelberg (2008)Google Scholar
  4. 4.
    Dean, R.: Symmetry, structure and spacetime. Elsevier, Oxford (2008)Google Scholar
  5. 5.
    Erlichson, E.: The Leibniz-Clarke controversy: Absolute versus relative space and time. Am. J. Phys. 35, 89 (1967)ADSCrossRefGoogle Scholar
  6. 6.
    Čapek, M. (ed.): The concepts of space and time, their structure and their development. Boston Studies in The Philosophy of Science, vol. 74. Reidel Publishing Company, Boston (1976)Google Scholar
  7. 7.
    Earman, J., Norton, J.: What price spacetime substantivalism? The hole story. British J. Phil. Sci. 38, 515 (1987)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Berkley, G. De Motu or The principle and nature of motion and the cause of the communication of motions (1721)Google Scholar
  9. 9.
    Maxwell, J.C.: A dynamical theory of the electromagnetic field. Roy. Soc. 155, 459 (1865). This article accompanied a December 8, 1864 presentation by Maxwell to the Royal SocietyGoogle Scholar
  10. 10.
    Adler, I.: A new look at geometry. John Day Company, New York (1966)Google Scholar
  11. 11.
    Hardie, R.P., Gaye, R.K.: The Works of Aristotle, Vol. 2. Physica. Clarendon Press, Oxford (1930)Google Scholar
  12. 12.
    Aristotle: Physics, (Oxford World’s Classics), Edited by: D. Bostock, Translated by: R. Waterfield. Oxford University Press, Oxford (2008)Google Scholar
  13. 13.
    Mashhoon, B., Liu, H., Wesson, P.S.: Space-time-matter. In: Proceedings 7th Marcel Grossmann Meeting, pp 333–335, Stanford (1994)Google Scholar
  14. 14.
    d’Inverno, R.: Introducing Einstein’s relativity. Clarendon Press, Oxford (1992)zbMATHGoogle Scholar
  15. 15.
    Janssen, M.: Of pots and holes: Einstein’s bumpy road to general relativity. Ann. Phys. (Berlin) 14, 58 (2005). SupplementADSCrossRefGoogle Scholar
  16. 16.
    Mach, E.: La Meccanica nel suo Sviluppo Storico-Critico (Mechanics in Its Development Historical-Critical). Boringhieri, Torino (1977). Italian translation from the original 9th German Ed. of 1933 (1st Ed. 1883). Also published as “The Science of Mechanics: A Critical and Historical Account of Its Development”, (Open Court, Illinois, 1960)Google Scholar
  17. 17.
    Barbour, J., Pfister, H. (eds.): Mach’s principle: from Newton’s bucket to quantum gravity. Einstein Studies, vol. 6. Birkhäuser, Boston (1995)Google Scholar
  18. 18.
    Lense, J., Thirring, H.: Über den Einfluss der Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie (About the influence of the self-rotation of cenral body to the movement of planets and moons according to Einstein’s theory of gravitation). Physik. Z. 19, 156 (1918)zbMATHGoogle Scholar
  19. 19.
    Mashhoon, B., Hehl, F.W., Theiss, D.S.: On the gravitational effects of rotating masses: the Thirring-Lense papers. Gen. Rel. Grav. 16, 711 (1984)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Ciufolini, I.: The 1995–99 measurements of the Lense-Thirring effect using laser-ranged satellites. Class. Quant. Grav. 17, 2369 (2000)ADSzbMATHCrossRefGoogle Scholar
  21. 21.
    Everitt, F., et al.: Gravity probe B: final results of a space experiment to test general relativity. Phys. Rev. Lett. 106, 221101 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    Iorio, L.: Some considerations on the present-day results for the detection of frame-dragging after the final outcome of GP-B. Europhys. Lett. 96, 30001 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    French, A.P.: Special relativity. W.W. Norton, New York (1966)Google Scholar
  24. 24.
    Resnick, R.: Introduction to special relativity. Wiley, New York (1968)Google Scholar
  25. 25.
    Michelson, A.A., Morley, E.W.: On the relative motion of the earth and the luminiferous ether. Am. J. Sci. 34, 333 (1887)zbMATHCrossRefGoogle Scholar
  26. 26.
    Shankland, R.S., McCuskey, S.W., Leone, F.C., Kuerti, G.: New analysis of the interferometer observations of Dayton C. Miller. Rev. Mod. Phys. 27, 167 (1955)ADSCrossRefGoogle Scholar
  27. 27.
    Shankland, R.S.: Michelson-Morley experiment. Am. J. Phys. 32, 16 (1964)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    Fitzgerald, F.: The ether and the earth’s atmosphere. Science 13, 390 (1889)ADSGoogle Scholar
  29. 29.
    Lorentz, H.A: La théorie électromagnétique de Maxwell et son application aux corps mouvants (The electromagnetic theory of Maxwell and its application to moving bodies). Arch. Néerl. Sci. Ex. Nat. 25, 363 (1892)Google Scholar
  30. 30.
    Lorentz, H.A.: The relative motion of the earth and the aether. Zitt. Akad. V. Wet. 1, 74 (1892)Google Scholar
  31. 31.
    Lorentz, H.A.: The theory of electrons and its applications to the phenomena of light and radiatiant heat. Columbia University Press, New York (1909); Dover Publications, New York (1952)Google Scholar
  32. 32.
    Lorentz, H.A.: Electromagnetic phenomena in a system moving with any velocity less than that of light. Proc. Acad. Sci. Amsterdam 6, 809 (1904). Reprinted in: “The Principle of Relativity: A Collection of Original Memoirs on The Special and General Theory of Relativity”, by: H.A. Lorentz, A. Einstein, H. Minkowski and H. Weyl, Translated by: W. Perrett and G.B. Jeffery, (Dover Publications, New York, 1952), pp. 9–34Google Scholar
  33. 33.
    Kennedy, R.J., Thorndike, E.M.: Experimental establishment of the relativity of time. Phys. Rev. 42, 400 (1932)ADSzbMATHCrossRefGoogle Scholar
  34. 34.
    Bradley, J.: New discovered motion of the fixed stars. Phil. Trans. Roy. Soc. 35, 637 (1727)CrossRefGoogle Scholar
  35. 35.
    Stewart, A.B.: The discovery of stellar aberration. Sci. Am. 210, 100 (1964)CrossRefGoogle Scholar
  36. 36.
    Michelson, A.A., Morley, E.W.: Influence of motion of the medium on the velocity of light. Am. J. Sci. 31, 377 (1886)CrossRefGoogle Scholar
  37. 37.
    Bilger, H.R., Stowell, W.K.: Light drag in a ring laser: An improved determination of the drag coefficient. Phys. Rev. A 16, 313 (1977)ADSCrossRefGoogle Scholar
  38. 38.
    Sanders, G.A., Ezekiel, S.: Measurement of Fresnel drag in moving media using a ring resonator technique. J. Opt. Soc. Am. B 5, 674 (1988)ADSCrossRefGoogle Scholar
  39. 39.
    Ives, H.E.: Historical note on the rate of a moving atomic clock. J. Opt. Soc. Am. 37, 810 (1947)ADSCrossRefGoogle Scholar
  40. 40.
    Whittaker, E.T.: A history of the theories of Æther and electricity: the modern theories 1900–1926. Nelson, London (1953); Harper, New York (1960); Humanities Press, London (1973)Google Scholar
  41. 41.
    Holton, G.: On the origins of the special theory of relativity. Am. J. Phys. 28, 627 (1960)ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    Rindler, W.: Einstein’s priority in recognizing time dilation physically. Am. J. Phys. 38, 1111 (1970)ADSCrossRefGoogle Scholar
  43. 43.
    Erlichson, H.: The rod contraction-clock retardation ether theory and the special theory of relativity. Am. J. Phys. 41, 1068 (1973)ADSCrossRefGoogle Scholar
  44. 44.
    Riess, A.G., et al.: Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009 (1998)ADSCrossRefGoogle Scholar
  45. 45.
    Perlmutter, S., et al.: The Supernova Cosmology Project. Measurements of Omega and Lambda from 42 high-redshift supernovae. Astrophys. J. 517, 565 (1999)ADSCrossRefGoogle Scholar
  46. 46.
    Riess, A.G., et al.: BV RI light curves for 22 type Ia supernovae. Astron. J. 117, 707 (1999)ADSCrossRefGoogle Scholar
  47. 47.
    Riess, A.G., et al.: Type Ia supernova discoveries at z>1 from the Hubble space telescope: Evidence for past deceleration and constraints on dark energy evolution. Astrophys. J. 607, 665 (2004)ADSCrossRefGoogle Scholar
  48. 48.
    Einstein, A.: Zur Elektrodynamik bewegter Körper. Ann. Phys. (Berlin) 322, 891 (1905). Its English version: “On the electrodynamics of moving bodies”, In: “The Principle of Relativity: A Collection of Original Memoirs on The Special and General Theory of Relativity”, by H.A. Lorentz, A.Einstein, H. Minkowski and H. Weyl, Translated by: W. Perrett and G.B. Jeffery, (Dover Publications, New York, 1952), pp. 35–65ADSCrossRefGoogle Scholar
  49. 49.
    Minkowski, H.: Raum und Zeit. Jber. Deutsch. Math.-Verein. 18, 75 (1909). Address delivered at the 80th Assembly of German Natural Scientists and Physicians, Cologne, Sept. 21, 1908. Its English version: “Space and time”, In: “The Principle of Relativity: A Collection of Original Memoirs on The Special and General Theory of Relativity”, by H.A. Lorentz, A. Einstein, H. Minkowski and H. Weyl, Translated by: W. Perrett and G.B. Jeffery, (Dover Publications, New York, 1952), pp. 73–91zbMATHGoogle Scholar
  50. 50.
    Born, M.: Die Theorie des starren Elektrons in der Kinematik des Relativitätsprinzips (The theory of rigid electron in the kinematics of principle of relativity). Ann. Phys. (Berlin) 335, 1 (1909)ADSzbMATHCrossRefGoogle Scholar
  51. 51.
    Ehrenfest, P.: Gleichförmige Rotation starrer Körper und Relativitätstheorie (Uniform rotation of rigid bodies and theory of relativity.) Physik. Z. 10, 918 (1909)zbMATHGoogle Scholar
  52. 52.
    Petkov, V.: Relativity and the nature of spacetime. Springer, Berlin (2005)zbMATHGoogle Scholar
  53. 53.
    Iorio, A.: Three questions on Lorentz violation. J. Phys. Conf. Ser. 67, 012008 (2007)ADSCrossRefGoogle Scholar
  54. 54.
    Mattingly, D.: Modern tests of Lorentz invariance. Living Rev. Rel. 8, 5 (2005)zbMATHGoogle Scholar
  55. 55.
    Shinozaki, K., et al.: AGASA Collaboration. AGASA results. Nucl. Phys. B 136, 18 (2004)CrossRefGoogle Scholar
  56. 56.
    Stecker, F.W., Malkan, M.A., Scully, S.T.: Intergalactic photon spectra from the far-IR to the UV Lyman limit for 0<z<6 and the optical depth of the universe to high-energy gamma rays. Astrophys. J. 648, 774 (2006)ADSCrossRefGoogle Scholar
  57. 57.
    Abbasi, R.U., et al.: First observation of the Greisen-Zatsepin-Kuzmin suppression. Phys. Rev. Lett. 100, 101101 (2008)ADSCrossRefGoogle Scholar
  58. 58.
    DroŻdŻyński, J.: Evidence for an invalidity of the principle of relativity. J. Mod. Phys. 2, 1247 (2011)CrossRefGoogle Scholar
  59. 59.
    Sela, O., Tamir, B., Dolev, S., Elitzur, A.C.: Can special relativity be derived from Galilean mechanics alone? Found. Phys. 39, 499 (2009)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  60. 60.
    Coleman, S., Glashow, S.L.: High-energy tests of Lorentz invariance. Phys. Rev. D 59, 116008 (1999)ADSCrossRefGoogle Scholar
  61. 61.
    Einstein, A.: Die Feldgleichungen der Gravitation (The field equations of gravitation). Preuss. Akad. Wiss. Berlin Sitz. 17, 844 (1915)zbMATHGoogle Scholar
  62. 62.
    Einstein, A.: Die Grundlage der allgemeinen Relativitätstheorie. Ann. Phys. (Berlin) 354, 769 (1916). Its English version: “The foundation of the general theory of relativity”, In: “The Principle of Relativity: A Collection of Original Memoirs on The Special and General Theory of Relativity”, by: H.A. Lorentz, A. Einstein, H. Minkowski and H. Weyl, Translated by: W. Perrett and G.B. Jeffery, (Dover Publications, New York, 1952), pp. 109–164ADSzbMATHCrossRefGoogle Scholar
  63. 63.
    Lichtenegger, H., Mashhoon, B.: Mach’s principle. In: Iorio, L. (ed.) The measurment of gravitomagnetism: a challenging enterprise, pp 13–27. NOVA Science, Hauppage, New York (2005). arXiv:physics/0407078
  64. 64.
    Ciufolini, I., Wheeler, J.A.: Gravitation and inertia. Princeton University Press, Princeton (1995)zbMATHGoogle Scholar
  65. 65.
    Straumann, N.: General relativity with applications to astrophysics. Springer, Berlin (2004)zbMATHGoogle Scholar
  66. 66.
    Mehra, J.: Einstein, Hilbert, and the theory of gravitation. Reidel Publishing Company, Holland (1974)zbMATHCrossRefGoogle Scholar
  67. 67.
    Pais, A.: Subtle is the Lord, the science and the life of Albert Einstein. Oxford University Press, Oxford (1982)Google Scholar
  68. 68.
    Stachel, J.: Einstein’s struggle with general covariance, 1912–1915. Presented at General Relativity and Gravitation 9th, 1980 at Jena, Germany; Reprinted as “Einstein’s search for general covariance, 1912–1915”. In: Howard, D., Stachel, J. (eds.) Einstein and The History of General Relativity, based on the Proceedings of May 1986, Osgood Hill Conference, Massachusetts, pp 63–100. The Center for Einstein Studies, Boston University (1989)Google Scholar
  69. 69.
    Stachel, J.: What a physicist can learn from the discovery of general relativity. In: Ruffini, R. (ed.) Proceedings of The Fourth Marcel Grossmann Meeting on General Relativity, pp 1857–1862. North-Holland, Amsterdam (1986)Google Scholar
  70. 70.
    Norton, J.: How Einstein found his field equations, 1912–1915. In: Howard, D., Stachel, J. (eds.) Einstein and The History of General Relativity, based on the Proceedings of May 1986, Osgood Hill Conference, Massachusetts, pp. 101–159. The Center for Einstein Studies, Boston University (1989). It is reprinted from “Historical Studies in The Physical Sciences”, Vol. 14, Part 2, Edited by: J.L. Heilbron, (The Regents of The University of California, Berkeley, 1984), pp. 253–316Google Scholar
  71. 71.
    Synge, J.L.: Relativity: the general theory. North-Holland, Amsterdam (1960)zbMATHGoogle Scholar
  72. 72.
    Birrell, N.D., Davies, P.C.W.: Quantum fields in curved space. Cambridge University Press, Cambridge (1982)zbMATHCrossRefGoogle Scholar
  73. 73.
    Buchbinder, I.L., Odintsov, S.D., Shapiro, I.L.: Effective action in quantum gravity. Institute of Physics Publishing, Bristol (1992)Google Scholar
  74. 74.
    Einstein, A., Grossmann, M.: Entwurf einer verallgemeinerten Relativitätstheorie und einer Theorie der Gravitation (Draft of a generalized relativity theory and a theory of gravitation). Z. Math. Phys. 62, 225 (1913)zbMATHGoogle Scholar
  75. 75.
    Einstein, A., Grossmann, M.: Kovarianzeigenschaften der Feldgleichungen der auf die verallgemeinerte Relativitätstheorie gegründeten Gravitationstheorie (Covariance properties of the field equations of the gravitational theory based on generalized relativity). Z. Math. Phys. 63, 215 (1914)zbMATHGoogle Scholar
  76. 76.
    A. Einstein wrote to: P. Ehrenfest, on 26th December, 1915, EA 9–363Google Scholar
  77. 77.
    A. Einstein wrote to: M. Besso, on 3rd January, 1916, In: “Albert Einstein, Michele Besso Correspondence 1903–1955”, Edited by: P. Speziali, (Hermann, Paris, 1972), pp. 63–64Google Scholar
  78. 78.
    Einstein, A.: Relativity and the problem of space (1952), Appendix 5. In: Relativity, The Special and The General Theory: A Popular Exposition, Translated by: R.W. Lawson, Methuen, London, 15th Ed., pp 135–157 (1954)Google Scholar
  79. 79.
    Eddington, A.S.: ‘Space’ or ‘Æther’? Nature 107, 201 (1921)ADSzbMATHCrossRefGoogle Scholar
  80. 80.
    Einstein, A.: Äther und Relativitätstheorie (Ether and Relativity Theory), (Springer, Berlin, 1920), reprinted as “Sidelights on Relativity”. Dover Publications, New York (1983)Google Scholar
  81. 81.
    Trautman, A: Comparison of Newtonian and relativistic theories of space-time. In: Hoffmann, B. (ed.) Perspectives in Geometry and Relativity, pp 413–425. Indiana University Press, Bloomington (1966)Google Scholar
  82. 82.
    Whittaker, E.T.: A History of The Theories of Æther and Electricity: The Classical Theories, 2nd Ed. Nelson, London (1951); Tomash Publishers, New York (1987)Google Scholar
  83. 83.
    Schaffner, K.F.: Nineteenth-Century Æther Theories. Pergamon Press, New York (1972)Google Scholar
  84. 84.
    Dupré, M.J., Tipler, F.J.: General relativity as an æther theory. Int. J. Mod. Phys. D 21, 1250011 (2012)ADSzbMATHCrossRefGoogle Scholar
  85. 85.
    Gautreau, R.: Newton’s absolute time and space in general relativity. Am. J. Phys. 68, 350 (2000)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  86. 86.
    Savickas, D.: General relativity exactly described in terms of Newton’s laws within curved geometries. Int. J. Mod. Phys. D 23, 1430018 (2014)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  87. 87.
    Salam, A.: Gauge unification of fundamental forces. Rev. Mod. Phys. 52, 525 (1980)ADSMathSciNetCrossRefGoogle Scholar
  88. 88.
    Wesson, P.S., Ponce de Leon, J.: Kaluza-Klein equations, Einstein’s equations, and an effective energy-momentum tensor. J. Math. Phys. 33, 3883 (1992)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  89. 89.
    Romero, C., Tavakol, R., Zalaletdinov, R.: The embedding of general relativity in five dimensions. Gen. Rel. Grav. 28, 365 (1996)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  90. 90.
    Overduin, J.M., Wesson, P.S.: Kaluza-Klein gravity. Phys. Rep. 283, 303 (1997)ADSMathSciNetCrossRefGoogle Scholar
  91. 91.
    Wesson, P.S.: Space-Time-Matter: Modern Kaluza-Klein Theory. World Scientific, Singapore (1999)zbMATHCrossRefGoogle Scholar
  92. 92.
    Wesson, P.S.: Five-dimensional physics: classical and quantum consequences of Kaluza-Klein cosmology. World Scientific, Singapore (2006)zbMATHCrossRefGoogle Scholar
  93. 93.
    Bahrehbakhsh, A.F., Farhoudi, M., Shojaie, H.: FRW cosmology from five dimensional vacuum Brans-Dicke theory. Gen. Rel. Grav. 43, 847 (2010)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  94. 94.
    Rasouli, S.M.M., Farhoudi, M., Sepangi, H.R.: Anisotropic cosmological model in modified Brans-Dicke theory. Class. Quant. Grav. 28, 155004 (2011)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  95. 95.
    Bahrehbakhsh, A.F., Farhoudi, M., Vakili, H.: Dark energy from fifth dimensional Brans-Dicke theory. Int. J. Mod. Phys. D 22, 1350070 (2013)ADSzbMATHCrossRefGoogle Scholar
  96. 96.
    Rasouli, S.M.M., Farhoudi, M., Moniz, P.V.: Modified Brans-Dicke theory in arbitrary dimensions. Class. Quant. Grav. 31, 115002 (2014)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  97. 97.
    Harko, T.: Modified gravity with arbitrary coupling between matter and geometry. Phys. Lett. B 669, 376 (2008)ADSMathSciNetCrossRefGoogle Scholar
  98. 98.
    Harko, T., Lobo, F.S.N., Nojiri, S., Odintsov, S.D.: f(R,T) gravity. Phys. Rev. D 84, 024020 (2011)ADSCrossRefGoogle Scholar
  99. 99.
    Bisabr, Y.: Modified gravity with a nonminimal gravitational coupling to matter. Phys. Rev. D 86, 044025 (2012)ADSCrossRefGoogle Scholar
  100. 100.
    Jamil, M., Momeni, D., Muhammad, R., Ratbay, M.: Reconstruction of some cosmological models in f(R,T) gravity. Eur. Phys. J. C 72, 1999 (2012)ADSCrossRefGoogle Scholar
  101. 101.
    Alvarenga, F.G., de la Cruz-Dombriz, A., Houndjo, M.J.S., Rodrigues, M.E., Saez-Gomez, D.: Dynamics of scalar perturbations in f(R,T) gravity. Phys. Rev. D 87, 103526 (2013)ADSCrossRefGoogle Scholar
  102. 102.
    Haghani, Z., Harko, T., Lobo, F.S.N., Sepangi, H.R., Shahidi, S.: Further matters in space-time geometry: f(R,T,R μν T μν) gravity. Phys. Rev. D 88, 044023 (2013)ADSCrossRefGoogle Scholar
  103. 103.
    Shabani, H., Farhoudi, M.: f(R,T) cosmological models in phase-space. Phys. Rev. D 88, 044048 (2013)ADSCrossRefGoogle Scholar
  104. 104.
    Shabani, H., Farhoudi, M.: Cosmological and solar system consequences of f(R,T) gravity models. Phys. Rev. D 90, 044031 (2014)ADSCrossRefGoogle Scholar
  105. 105.
    Zaregonbadi, R., Farhoudi, M.: Late time acceleration from matter-curvature coupling, submitted to journalGoogle Scholar
  106. 106.
    Einstein, A.: Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie. Preuss. Akad. Wiss. Berlin, Sitz., 142 (1917). Its English version: “Cosmological considerations on the general theory of relativity”, In: “The Principle of Relativity: A Collection of Original Memoirs on The Special and General Theory of Relativity”, by: H.A. Lorentz, A. Einstein, H. Minkowski and H. Weyl, Translated by: W. Perrett and G.B. Jeffery, (Dover Publications, New York, 1952), pp. 175–188Google Scholar
  107. 107.
    de Sitter, W.: On the curvature of space. Proc. Kon. Ned. Acad. Wet. 20, 229 (1918)ADSGoogle Scholar
  108. 108.
    Hubble, E.P.: A relation between distance and radial velocity among extragalactic nebulae. Proc. Natl. Acad. Sci. USA 15, 169 (1929)ADSzbMATHCrossRefGoogle Scholar
  109. 109.
    Gamow, G.: My world line, an informal autobiography. Viking, New York (1970)Google Scholar
  110. 110.
    A. Einstein wrote to: F. Pirani, 1954, EA 17–448Google Scholar
  111. 111.
    Namavarian, N., Farhoudi, M.: Cosmological constant implementing Mach principle in general relativity, submitted to journalGoogle Scholar
  112. 112.
    Weinberg, S.: The cosmological constant problem. Rev. Mod. Phys. 61, 1 (1989)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  113. 113.
    Carroll, S.M.: The cosmological constant. Living. Rev. Rel. 4, 1 (2001)zbMATHGoogle Scholar
  114. 114.
    Sahni, V.: The cosmological constant problem and quintessence. Class. Quant. Grav. 19, 3435 (2002)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  115. 115.
    Nobbenhuis, S.: Categorizing different approaches to the cosmological constant problem. Found. Phys. 36, 613 (2006)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  116. 116.
    Padmanabhan, H., Padmanabhan, T.: CosMIn: The solution to the cosmological constant problem. Int. J. Mod. Phys. D 22, 1342001 (2013)ADSMathSciNetCrossRefGoogle Scholar
  117. 117.
    Bernard, D., LeClair, A.: Scrutinizing the cosmological constant problem and a possible resolution. Phys. Rev. D 87, 063010 (2013)ADSCrossRefGoogle Scholar
  118. 118.
    Weinberg, S.: Cosmology. Oxford University Press, Oxford (2008)zbMATHGoogle Scholar
  119. 119.
    Barrow, J.D., Shaw, D.J.: The value of the cosmological constant. Gen. Rel. Grav. 43, 2555 (2011)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  120. 120.
    Peebles, P.J.E., Ratra, B.: The cosmological constant and dark energy. Rev. Mod. Phys. 75, 559 (2003)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  121. 121.
    Padmanabhan, T.: Cosmological constant–the weight of the vacuum. Phys. Rep. 380, 235 (2003)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  122. 122.
    Polarski, D.: Dark energy: Current issues. Ann. Phys. (Berlin) 15, 342 (2006)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  123. 123.
    Copeland, E.J., Sami, M., Tsujikawa, S.: Dynamics of dark energy. Int. J. Mod. Phys. D 15, 1753 (2006)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  124. 124.
    Durrer, R., Maartens, R.: Dark energy and dark gravity: Theory overview. Gen. Rel. Grav. 40, 301 (2008)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  125. 125.
    Bamba, K., Capozziello, S., Nojiri, S., Odintsov, S.D.: Dark energy cosmology: the equivalent description via different theoretical models and cosmography tests. Astrophys. Space Sci. 342, 155 (2012)ADSzbMATHCrossRefGoogle Scholar
  126. 126.
    Ade, P.A.R., et al.: Planck Collaboration. Planck 2013 results. XVI. Cosmological parameters. Astron. Astrophys. 571, A16 (2014)Google Scholar
  127. 127.
    Ade, P.A.R., et al.: Planck Collaboration. Planck 2015 results. XIII. Cosmological parameters. arXiv:1502.01589
  128. 128.
    Farhoudi, M.: On higher order gravities, their analogy to GR, and dimensional dependent version of Duff’s trace anomaly relation. Gen. Rel. Grav. 38, 1261 (2006)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  129. 129.
    Bertonea, G., Hooperb, D., Silk, J.: Particle dark matter: Evidence, candidates and constraints. Phys. Rep. 405, 279 (2005)ADSCrossRefGoogle Scholar
  130. 130.
    Silk, J.: Dark matter and galaxy formation. Ann. Phys. (Berlin) 15, 75 (2006)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  131. 131.
    Feng, J.L.: Dark matter candidates from particle physics and methods of detection. Annu. Rev. Astron. Astrophys. 48, 495 (2010)ADSCrossRefGoogle Scholar
  132. 132.
    Bergström, L.: Dark matter evidence, particle physics candidates and detection methods. Ann. Phys. (Berlin) 524, 479 (2012)ADSCrossRefGoogle Scholar
  133. 133.
    Frenk, C.S., White, S.D.M.: Dark matter and cosmic structure. Ann. Phys. (Berlin) 524, 507 (2012)ADSCrossRefGoogle Scholar
  134. 134.
    Farhoudi, M: Classical trace anomaly. Int. J. Mod. Phys. D 14, 1233 (2005)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  135. 135.
    Brans, C., Dicke, R.H.: Mach’s principle and a relativistic theory of gravitation. Phys. Rev. 124, 925 (1961)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  136. 136.
    Dicke, R.H.: Mach’s principle and invariance under transformation of units. Phys. Rev. 125, 2163 (1962)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  137. 137.
    Fujii, Y., Maeda, K.: The scalar-tensor theory of gravitation. Cambridge University Press, Cambridge (2004)zbMATHCrossRefGoogle Scholar
  138. 138.
    Farajollahi, H., Farhoudi, M., Shojaie, H.: On dynamics of Brans-Dicke theory of gravitation. Int. J. Theor. Phys. 49, 2558 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  139. 139.
    Faraoni, V.: Cosmology in scalar tensor gravity. Kluiwer Academic Publishers, Netherlands (2004)zbMATHCrossRefGoogle Scholar
  140. 140.
    Capozziello, S., Faraoni, V.: Beyond Einstein gravity: a survey of gravitational theories for cosmology and astrophysics. Springer, Heidelberg (2011)zbMATHGoogle Scholar
  141. 141.
    Khoury, J., Weltman, A.: Chameleon cosmology. Phys. Rev. D 69, 044026 (2004)ADSMathSciNetCrossRefGoogle Scholar
  142. 142.
    Brax, P., Burrage, C., Davis, A.-C., Seery, D., Weltman, A.: Higgs production as a probe of chameleon dark energy. Phys. Rev. D 81, 103524 (2010)ADSCrossRefGoogle Scholar
  143. 143.
    Farajollahi, H., Farhoudi, M., Salehi, A., Shojaie, H.: Chameleonic generalized Brans-Dicke model and late-time acceleration. Astrophys. Space Sci. 337, 415 (2012)ADSzbMATHCrossRefGoogle Scholar
  144. 144.
    Saba, N., Farhoudi, M.: Chameleonic inflation in the light of Planck 2015, work in progressGoogle Scholar
  145. 145.
    Jacobson, T., Mattingly, D.: Gravity with a dynamical preferred frame. Phys. Rev. D 64, 024028 (2001)ADSMathSciNetCrossRefGoogle Scholar
  146. 146.
    Eling, C., Jacobson, T., Mattingly, D.: Einstein-æther theory. arXiv:http://arxiv.orr/abs/gr-qc/0410001
  147. 147.
    Jacobson, T.: Einstein-æther gravity: a status report. PoS QG-Ph, 020 (2007). arXiv:0801.1547
  148. 148.
    Barrow, J.D.: Some inflationary Einstein-aether cosmologies. Phys. Rev. D 85, 047503 (2012)Google Scholar
  149. 149.
    Wei, H., Yan, X.-P., Zhou, Y.-N.: Cosmological evolution of Einstein-aether models with power-law-like potential. Gen. Rel. Grav. 46, 1719 (2014)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  150. 150.
    Haghani, Z., Harko, T., Sepangi, H.R., Shahidi, S.: Scalar Einstein-aether theory. arXiv:1404.7689
  151. 151.
    Furtado, C., Nascimento, J.R., Petrov, A.Y., Santos, A.F.: The æther-modified gravity and the Gödel metric. arXiv:1109.5654
  152. 152.
    The Timaeus of Plato, Edited with Introduction and Notes by: R.D. Archer-Hind, (Macmillan, London, 1888)Google Scholar
  153. 153.
    Plato: Timaeus, Translated by: B. Jowett. Echo Library, United Kingdom (2006)Google Scholar
  154. 154.
    Webb, J.K., et al.: A search for time variation of the fine structure constant. Phys. Rev. Lett. 82, 884 (1999)ADSCrossRefGoogle Scholar
  155. 155.
    Murphy, M.T., et al.: Possible evidence for a variable fine structure constant from QSO absorption lines: Motivations, analysis and results. Mon. Not. Roy. Astron. Soc. 327, 1208 (2001)ADSCrossRefGoogle Scholar
  156. 156.
    Albert, J., et al.: Probing quantum gravity using photons from a are of the active galactic nucleus Markarian 501 observed by the MAGIC telescope. Phys. Lett. B 668, 253 (2008). [MAGIC Collaboration]ADSCrossRefGoogle Scholar
  157. 157.
    Barrow, J.D., Magueijo, J.: Varying– α theories and solutions to the cosmological problems. Phys. Lett. B 443, 104 (1998)ADSCrossRefGoogle Scholar
  158. 158.
    Sandvik, H.B., Barrow, J.D., Magueijo, J.: A simple varying–alpha cosmology. Phys. Rev. Lett. 88, 031302 (2002)ADSCrossRefGoogle Scholar
  159. 159.
    Barrow, J.D., Magueijo, J.: Solutions to the quasi-flatness and quasi-lambda problems. Phys. Lett. B 447, 246 (1998)ADSCrossRefGoogle Scholar
  160. 160.
    Clayton, M.A., Moffat, J.W.: Dynamical mechanism for varying light velocity as a solution to cosmological problem. Phys. Lett. B 480, 263 (1998)Google Scholar
  161. 161.
    Albrecht, A., Magueijo, J.: A time varying speed of light as a solution to cosmological puzzles. Phys. Rev. D 59, 043516 (1999)ADSCrossRefGoogle Scholar
  162. 162.
    Magueijo, J.: New varying speed of light theories. Rep. Prog. Phys. 66, 2025 (2003)ADSMathSciNetCrossRefGoogle Scholar
  163. 163.
    Shojaie, H., Farhoudi, M.: A cosmology with variable c. Can. J. Phys. 84, 933 (2006)ADSCrossRefGoogle Scholar
  164. 164.
    Shojaie, H., Farhoudi, M.: A varying-c cosmology. Can. J. Phys. 85, 1395 (2007)ADSCrossRefGoogle Scholar
  165. 165.
    Magueijo, J., Barrow, J.D., Sandvik, H.B.: Is it e or is it c? Experimental tests of varying alpha. Phys. Lett. B 549, 284 (2002)ADSMathSciNetCrossRefGoogle Scholar
  166. 166.
    Castorina, P., Zappala, D.: Noncommutative electrodynamics and ultra high energy gamma rays. Europhys. Lett. 64, 641 (2003)ADSCrossRefGoogle Scholar
  167. 167.
    Horvat, R., Kekez, D., Schupp, P., Trampeti, J., You, J.: Photon-neutrino interaction in 𝜃–exact covariant noncommutative field theory. Phys. Rev. D 84, 045004 (2011)ADSCrossRefGoogle Scholar
  168. 168.
    Amelino-Camelia, G.: Relativity in space-times with short-distance structure governed by an observer-independent (Planckian) length scale. Int. J. Mod. Phys. D 11, 35 (2002)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  169. 169.
    Magueijo, J., Smolin, L.: Lorentz invariance with an invariant energy scale. Phys. Rev. Lett. 88, 190403 (2002)ADSCrossRefGoogle Scholar
  170. 170.
    Kowalski-Glikman, J., Nowak, S.: Non-commutative space-time of doubly special relativity theories. Int. J. Mod. Phys. D 12, 299 (2003)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  171. 171.
    Guo, H.-Y., Huang, C.-G., Xu, Z., Zhou, B.: On de Sitter invariant special relativity and cosmological constant as origin of inertia. Mod. Phys. Lett. A 19, 1701 (2004)ADSMathSciNetCrossRefGoogle Scholar
  172. 172.
    Agostini, A., Amelino-Camelia, G., D’Andrea, F.: Hopf-algebra description of noncommutative-spacetime symmetries. Int. J. Mod. Phys. A 19, 5187 (2004)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  173. 173.
    Guo, H.-Y., Wu, H.-T., Zhou, B.: The principle of relativity and the special relativity triple. Phys. Lett. B 670, 437 (2009)ADSMathSciNetCrossRefGoogle Scholar
  174. 174.
    Amelino-Camelia, G.: Doubly-special relativity: Facts, myths and some key open issues. Symmetry 2, 230 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  175. 175.
    Alexander, S.: On the varying speed of light in a brane-induced FRW universe. J. High Energy Phys. 0011, 017 (2000)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  176. 176.
    Drummond, I.T., Hathrell, S.J.: QED vacuum polarization in a background gravitational field and its effect on the velocity of photons. Phys. Rev. D 22, 343 (1980)ADSMathSciNetCrossRefGoogle Scholar
  177. 177.
    Clayton, M.A., Moffat, J.W.: Dynamical mechanism for varying light velocity as a solution to cosmological problems. Phys. Lett. B 460, 263 (1999)ADSCrossRefGoogle Scholar
  178. 178.
    Clayton, M.A., Moffat, J.W.: Scalar-tensor gravity theory for dynamical light velocity. Phys. Lett. B 477, 269 (2000)ADSCrossRefGoogle Scholar
  179. 179.
    Magueijo, J.: Bimetric varying speed of light theories and primordial fluctuations. Phys. Rev. D 79, 043525 (2009)ADSCrossRefGoogle Scholar
  180. 180.
    Finkbeiner, D., Davis, M., Schlegel, D.: Detection of a far IR excess with DIRBE at 60 and 100 microns. Astrophys. J. 544, 81 (2000)ADSCrossRefGoogle Scholar
  181. 181.
    Mazin, D., Raue, M.: New limits on the density of the extragalactic background light in the optical to the far infrared from the spectra of all known TeV blazars. Astron. Astrophys. 471, 439 (2007)ADSCrossRefGoogle Scholar
  182. 182.
    Penzias, A.A., Wilson, R.H.: A measurement of excess antenna temperature at 4080 Mc/s. Astrophys. J. 142, 419 (1965)ADSCrossRefGoogle Scholar
  183. 183.
    Greisen, K.: End to the cosmic-ray spectrum. Phys. Rev. Lett. 16, 748 (1966)ADSCrossRefGoogle Scholar
  184. 184.
    Zatsepin, G.T., Kuzmin, V.A.: Upper limit of the spectrum of cosmic rays. J. Exp. Theor. Phys. Lett. 4, 78 (1966)Google Scholar
  185. 185.
    Majid, S.: Foundations of Quantum Group Theory. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  186. 186.
    Fock, V.A.: The Theory of Space-Time and Gravitation. Pergamon Press, New York (1964)zbMATHGoogle Scholar
  187. 187.
    Hossenfelder, S.: The box-problem in deformed special relativity. arXiv:0912.0090
  188. 188.
    Scully, S.T., Stecker, F.W.: Lorentz invariance violation and the observed spectrum of ultrahigh energy cosmic rays. Astropart. Phys. 31, 220 (2009)ADSCrossRefGoogle Scholar
  189. 189.
    Yousefian, M., Farhoudi, M.: Justification of Webb’s redshift and ultra high energy cosmic rays via an ether model, work in progressGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of PhysicsShahid Beheshti UniversityTehranIran

Personalised recommendations