Advertisement

International Journal of Theoretical Physics

, Volume 55, Issue 3, pp 1871–1881 | Cite as

Optimization of the Electromagnetic (EM) Perturbative Effects Produced by High-Frequency Gravitational Waves

  • Jin LiEmail author
  • Lu Zhang
  • Hao Wen
Article

Abstract

For the relic gravitational waves in high frequency band, we survey the electromagnetic resonance effect generated from the high frequency gravitational waves, which can be described in the transverse perturbative photon fluxes. Under the fixed tensor-scalar ratio r = 0.2, spectral index n t = 0 and running index α t = 0.01, we discuss several properties and quantity changes of the transverse perturbative photon fluxes, which can be improved significantly through setting the longitudinal magnetic component of background EM field in the standard gaussian form, and wave impedance analysis on the transverse direction. Through the theoretical calculation, the transverse perturbative photon fluxes can reach up to 103 s −1 with some optimal parameters such as waist of EM field W 0 = 0.05m, initial stochastic phase of gravitational waves δ = (0.21 + n)π(n = 0,1,2...). Furthermore the interference of the background transverse photon fluxes can be removed completely through establishing a suitable wave impedance function.

Keywords

Relic gravitational waves The transverse perturbative photon fluxes Wave impedance analysis 

Notes

Acknowledgments

We would like to express my gratitude to Professor Fangyu Li for his great help. This work is supported by FAPESP No. 2012/08934-0, National Natural Science Foundation of China No. 11205254, No. 11178018 and No. 11375279, the Open Project Program of State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, China (No.Y5KF181CJ1) and the Fundamental Research Funds for the Central Universities CQDXWL-2013-010 and CDJRC10300003.

References

  1. 1.
    Chen, J.W., Zhang, Y., Zhao, W., Tong, M.L.: Initial condition of relic gravitational waves constrained by LIGO S6 and multiple interferometers. arXiv:1410.7151
  2. 2.
    Grishchuk, L.P.: Amplification of gravitational waves in an istropic universe. Sov. Phys. JETP 409, 40 (1975)Google Scholar
  3. 3.
    Grishchuk, L.P., Quantum effects in cosmology. Class. Quant. Grav. 10, 2449 (1993). arXiv:9302036
  4. 4.
    Grishchuk, L.P.: The implications of the microwave background anisotropies for laser-interferometer-tested gravitational waves. Class. Quant. Grav. 14, 1445 (1997). arXiv:9609062 ADSCrossRefGoogle Scholar
  5. 5.
    Grishchuk, L.P.: Relic gravitational waves and their detection. Lecture Notes in Physics, vol. 562 pp. 167. Springer-Verlag, arXiv:0002035 (2001)
  6. 6.
    Starobinsky, A.A.: Cosmic background anisotropy induced by isotropic flat-spectrum gravitational-wave perturbations. Sov. Astron. Lett. 11, 133 (1985)ADSGoogle Scholar
  7. 7.
    Giovannini, M.: Spikes in the relic graviton background from quintessential inflation. Class. Quant. Grav. 16, 2905 (1999). arXiv:hep-ph/9903263 ADSCrossRefzbMATHGoogle Scholar
  8. 8.
    Aasi J., et al.: Improved upper limits on the stochastic gravitational-wave back-ground from 2009-2010 LIGO and Virgo data. Phys. Rev. Lett. 113, 231101 (2014). arXiv:1406.4556v2 ADSCrossRefGoogle Scholar
  9. 9.
    Rubakov, V.A., Sazhin, M.V., Veryaskin, A.V.: Graviton creation in the inflationary universe and the grand unification scale. Phys. Lett. B 115, 189 (1982)ADSCrossRefzbMATHGoogle Scholar
  10. 10.
    Fabbri, R., Pollock, M.D.: The effect of primordially produced gravitons upon theanisotropy of the cosmological microwave background radiation. Phys. Lett. B 125, 445 (1983)ADSCrossRefGoogle Scholar
  11. 11.
    Abbott, L.F., Wise, M.B.: Constraints on generalized infationary cosmologies. Nucl. Phys. B 244, 541 (1984)ADSCrossRefGoogle Scholar
  12. 12.
    Allen, B.: Stochastic gravity-wave background in inflationary-universe models. Phys. Rev. D 37, 2078 (1988)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Maggiore, M.: Gravitational wave experiments and early universe cosmology. Phys. Rept. 331, 283 (2000). arXiv:9909001 ADSCrossRefGoogle Scholar
  14. 14.
    Zhao, W., Zhang, Y.: Relic gravitational waves and their detection. Phys. Rev. D 74, 043503 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    Allen, B., Koranda, S.: CBR anisotropy from primordial gravitational waves in inflationary cosmologies. Phys. Rev. D 50, 3713 (1994). arXiv:astro-ph/9404068 ADSCrossRefGoogle Scholar
  16. 16.
    Hobbs, G.: Pulsars and gravitational wave detection. PASA 22, 179 (2005). arXiv:astro-ph/0412153 ADSCrossRefGoogle Scholar
  17. 17.
    Hobbs, G.: Class. Quantum Grav. 25, 114032 (2008). arXiv:0802.1309
  18. 18.
    Ade, P.A.R., et al.: Phys. Rev. Lett. 112, 241101 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    BICEP2 collaboration, BICEP2 I: Detection of B-mode polarization at degree angular scales. Phys. Rev. Lett. 112, 241101 (2014). arXiv:Phys ADSCrossRefGoogle Scholar
  20. 20.
    Planck collaboration, Planck 2013 results: I. Overview of products and scientific results, arXiv:1303.5062
  21. 21.
    Planck collaboration, Planck 2013 results: XVI. Cosmological parameters, arXiv:1303.5076
  22. 22.
    Planck collaboration, Planck 2013 results: XXIII. Isotropy and statistics of the CMB, arXiv:1303.5083
  23. 23.
    Giovannini, M.: Production and detection of relic gravitons in quintessential inflationary models. Phys. Rev. D 60, 12351 (1999)Google Scholar
  24. 24.
    Li, J., Lin, K., Li, F.Y., Zhong, Y.H.: The signal photon flux, background photons and shot noise in electromagnetic response of high-frequency relic gravitational waves. Gen. Relat. Grav. 43, 2209 (2011)ADSCrossRefzbMATHGoogle Scholar
  25. 25.
    Li, F.Y., et al.: Signal photon flux and background noise in a coupling electromagnetic detecting system for high-frequency gravitational waves. Phys. Rev. D 80, 064013 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    Li, F.Y., et al.: Perturbative photon fluxes generated by high-frequency gravitational waves and their physical effects. Eur. Phys. J. C 56, 407 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    Li, F.Y., Tang, M.X., Shi, D. P.: Electromagnetic response of a Gaussian beam to high-frequency relic gravitational waves in quintessential inflationary models. Phys. Rev. D 67, 104008 (2003)ADSCrossRefGoogle Scholar
  28. 28.
    Grishchuk, L.P. arXiv:gr-gc/0002035
  29. 29.
    Grishchuk, L.P. arXiv:gr-gc/0305051
  30. 30.
    Grishchuk, L.P. arXiv:gr-gc/0504018
  31. 31.
    Li, J., et al.: The advanced system for the electromagnetic response of high-frequency gravitational waves. submitted to Gen. Relat. Grav.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.College of PhysicsChongqing UniversityChongqingChina
  2. 2.State Key Laboratory of Theoretical Physics, Institute of Theoretical PhysicsChinese Academy of SciencesBeijingChina

Personalised recommendations