International Journal of Theoretical Physics

, Volume 54, Issue 12, pp 4430–4443 | Cite as

The Quantum Nature of Identity in Human Thought: Bose-Einstein Statistics for Conceptual Indistinguishability

  • Diederik Aerts
  • Sandro Sozzo
  • Tomas Veloz


Increasing experimental evidence shows that humans combine concepts in a way that violates the rules of classical logic and probability theory. On the other hand, mathematical models inspired by the formalism of quantum theory are in accordance with data on concepts and their combinations. In this paper, we investigate a new connection between concepts and quantum entities, namely the way both behave with respect to ‘identity’ and ‘indistinguishability’. We do this by considering conceptual entities of the type Eleven Animals, were a number is combined with a noun. In the combination Eleven Animals, indeed the ‘animals’ are identical and indistinguishable, and our investigation aims at identifying the nature of this conceptual identity and indistinguishability. We perform experiments on human subjects and find significant evidence of deviation from the predictions of classical statistical theories, more specifically deviations with respect to Maxwell-Boltzmann statistics. This deviation is of the ‘same type’ of the deviation of quantum mechanical from classical mechanical statistics, due to indistinguishability of microscopic quantum particles, i.e we find convincing evidence of the presence of Bose-Einstein statistics. We also present preliminary promising evidence of this phenomenon in a web-based study.


Indistinguishability Quantum statistics Conceptual identity Quantum cognition 


  1. 1.
    Tversky, A., Kahneman, D.: Judgements of and by representativeness. In: Kahneman, D., Slovic, P., Tversky, A. (eds.) Judgement Under Uncertainty: Heuristics and Biases, pp. 84–98. Cambridge University Press, Cambridge (1982)CrossRefGoogle Scholar
  2. 2.
    Hampton, J.A.: Overextension of conjunctive concepts: evidence for a unitary model for concept typicality and class inclusion. J. Exp. Psychol.: Learn. Mem. Cogn. 14, 12–32 (1988)Google Scholar
  3. 3.
    Hampton, J.A.: Disjunction of natural concepts. Mem. Cogn. 16, 579–591 (1988)Google Scholar
  4. 4.
    Tversky, A., Shafir, E.: The disjunction effect in choice under uncertainty. Psychol. Sci. 3, 305–309 (1992)CrossRefGoogle Scholar
  5. 5.
    Aerts, D., Gabora, L.: A theory of concepts and their combinations I: the structure of the sets of contexts and properties. Kybernetes 34, 167–191 (2005)Google Scholar
  6. 6.
    Aerts, D., Gabora, L.: A theory of concepts and their combinations II: a Hilbert space representation. Kybernetes 34, 192–221 (2005)CrossRefzbMATHGoogle Scholar
  7. 7.
    Aerts, D.: Quantum structure in cognition. J. Math. Psychol. 53, 314–348 (2009)Google Scholar
  8. 8.
    Aerts, D.: Quantum particles as conceptual entities: a possible explanatory framework for quantum theory. Found. Sci. 14, 361–411 (2009)Google Scholar
  9. 9.
    Khrennikov, A.Y.: Ubiquitous Quantum Structure. Springer, Berlin (2010)CrossRefzbMATHGoogle Scholar
  10. 10.
    Aerts, D.: Sozzo: Quantum structure in cognition. Why and how concepts are entangled. LNCS 7052, 116–127 (2011)MathSciNetGoogle Scholar
  11. 11.
    Busemeyer, J.R., Bruza, P.D.: Quantum Models of Cognition and Decision. Cambridge University Press, Cambridge (2012)CrossRefGoogle Scholar
  12. 12.
    Aerts, D., Broekaert, J., Gabora, L., Sozzo, S.: Quantum structure and human thought. Behav. Bra. Sci 36, 274–276 (2013)CrossRefGoogle Scholar
  13. 13.
    Aerts, D., Gabora, L., Sozzo, S.: Concepts and their dynamics: a quantum–theoretic modeling of human thought. Top. Cogn. Sci. 5, 737–772 (2013)Google Scholar
  14. 14.
    Haven, E., Khrennikov, A.Y.: Quantum Social Science. Cambridge University Press, Cambridge (2013)CrossRefGoogle Scholar
  15. 15.
    Haven, E., Khrennikov, A.Y.: Quantum-like tunnelling and levels of arbitrage. Int. J. Theor. Phys. 52, 4083–4099 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Pothos, E.M., Busemeyer, J.R.: Can quantum probability provide a new direction for cognitive modeling? Behav. Bra. Sci. 36, 255–274 (2013)CrossRefGoogle Scholar
  17. 17.
    Aerts, D., Broekaert, J., Sozzo, S., Veloz, T.: Meaning–focused and quantum–inspired information retrieval. LNCS 8369, 71–83 (2014)MathSciNetGoogle Scholar
  18. 18.
    Aerts, D., Sozzo, S.: Quantum entanglement in conceptual combinations. Int. J. Theor. Phys. 53, 3587–3603 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Aerts, D., Sozzo, S., Tapia, J.: Identifying quantum structures in the Ellsberg paradox. Int. J. Theor. Phys. 53, 3666–3682 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Khrennikov, A.Y., Basieva, I., Dzhafarov, E.N., Busemeyer, J.R.: Quantum models for psychological measurements: an unsolved problem. Plos One 9(10), e110909 (2014)CrossRefGoogle Scholar
  21. 21.
    Khrennikova, P., Haven, E., Khrennikov, A.Y.: An application of the theory of open quantum systems to model the dynamics of party governance in the US Political System. Int. J. Theor. Phys. 53, 1346–1360 (2014)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Sozzo, S.: A quantum probability explanation in Fock space for borderline contradictions. J. Math. Psychol. 58, 1–12 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Aerts, D.: Foundations of quantum physics: a general realistic and operational approach. Int. J. Theor. Phys. 38, 289–358 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Castellani, E. (ed.): Interpreting Bodies: Classical and Quantum Objects in Modern Physics. Princeton University Press, Princeton (1998)Google Scholar
  25. 25.
    French, S., Krause, D.: Identity in Physics: A Historical, Philosophical, and Formal Analysis. Oxford University Press, Oxford (2006)CrossRefGoogle Scholar
  26. 26.
    Dieks, D., Versteegh, M.A.M.: Identical quantum particles and weak discernibility. Found. Phys. 38, 923–934 (2008)MathSciNetCrossRefADSzbMATHGoogle Scholar
  27. 27.
    Berndl, K., Daumer, M., Dürr, Goldstein, S., Zanghi: A survey of Bohmian mechanics. Nuovo Cim. 110, 737–750 (1995)CrossRefADSGoogle Scholar
  28. 28.
    Kolmogorov, A.N.: Grundbegriffe der Wahrscheinlichkeitrechnung, Ergebnisse Der Mathematik (1933); translated as Foundations of Probability. Chelsea Publishing Company, New York (1950)Google Scholar
  29. 29.
    Pylyshyn, Z.W.: Computation and Cognition. MIT Press, Cambridge (1984)Google Scholar
  30. 30.
    Leinaas, J.M., Myrheim, J.: On the theory of identical particles. Nuovo Cim. B 37, 1–23 (1977)CrossRefADSGoogle Scholar
  31. 31.
    Weinberg, S.: The Quantum Theory of Fields. Cambridge University Press, Cambridge (1995)CrossRefGoogle Scholar
  32. 32.
    Veloz, T.: Quantum cognition on the web: on states of concepts and semantic references (in preparation)Google Scholar
  33. 33.
    Kass, R.E., Raftery, A.E.: Bayes factors. J. Am. Stat. Assoc. 90(430), 773–795 (1995)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Center Leo Apostel for Interdisciplinary Studies (Clea)VUB University of BrusselsBrusselsBelgium
  2. 2.School of Management and IQSCSUniversity of LeicesterLeicesterUK
  3. 3.Mathematics DepartmentsUniversity of British Columbia Okanagan CampusKelownaCanada
  4. 4.Instituto de Filosofía y Ciencias de la Complejidad (IFICC)SantiagoChile

Personalised recommendations