International Journal of Theoretical Physics

, Volume 54, Issue 9, pp 3131–3142 | Cite as

τ-lepton as a Composition of Massless Preons: an Alternative to Higgs Mechanism

Article

Abstract

Within the framework of the confinement mechanism proposed earlier by the author in QCD the problem of masses for fundamental fermions in particle physics is discussed by the example of τ-lepton τ. It is shown that the observed parameters of τ-lepton such as its mass and magnetic moment can be obtained in a preon model dynamically due to a preon gauge interaction. The radius of τ-lepton is also estimated. Under the circumstances preons might be massless in virtue of existence of the nonzero chiral limit for the preon interaction energy.

Keywords

Gauge field theories Composite models 

References

  1. 1.
    Dugne, J.-J., Fredriksson, S., Hansson, J.: Europhys. Lett. 57, 188 (2002)CrossRefADSGoogle Scholar
  2. 2.
    Perkins, D.H. Introduction to High Energy Physics. Cambridge University Press, Cambridge (2000)CrossRefGoogle Scholar
  3. 3.
    Goncharov, Yu.P.: Mod. Phys. Lett. A 16, 557 (2001)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Goncharov, Yu.P.: Phys. Lett. B 617, 67 (2005)CrossRefADSGoogle Scholar
  5. 5.
    Goncharov, Yu.P. New Developments in Black Hole Research Chap. 3. In: Kreitler, P.V. (ed.) , pp. 67–121. Nova Science Publishers, New York (2006). arXiv:hep-th/0512099
  6. 6.
    Sánchez-Monroy, J.A., Quimbay, C.J.: Ann. Phys 327, 2166 (2012)MATHCrossRefADSGoogle Scholar
  7. 7.
    Wilson, K.: Phys. Rev. D 10, 2445 (1974)CrossRefADSGoogle Scholar
  8. 8.
    Bander, M.: Phys. Rep. 75, 205 (1981)CrossRefADSGoogle Scholar
  9. 9.
    Goncharov, Yu.P.: Nucl. Phys. A 808, 73 (2008)CrossRefADSGoogle Scholar
  10. 10.
    Goncharov, Yu.P.: Nucl. Phys. A 812, 99 (2008)CrossRefADSGoogle Scholar
  11. 11.
    Goncharov, Yu.P.: Eur. Phys. J. A 46, 139 (2010)MathSciNetCrossRefADSGoogle Scholar
  12. 12.
    Goncharov, Yu.P.: Int. J. Theor. Phys. 51, 428 (2012)MATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Goncharov, Yu.P., Pavlov, F.F. Horizons in World Physics 281 Chap. 9. In: Reimer, A. (ed.) , pp. 173–196. Nova Science Publishers, New York (2013)Google Scholar
  14. 14.
    Goncharov, Yu.P., Pavlov, F.F.: Few-Body Syst. 55, 35 (2014)CrossRefADSGoogle Scholar
  15. 15.
    Goncharov, Yu.P. Recent Advances in Quarks Research Chap. 3. In: Fujikage, H., Hyobanshi, K. (eds.) , pp. 13–61. Nova Science Publishers, New York (2013). arXiv:1312.4049
  16. 16.
    Beringer, J.J., et al.: Particle Data Group. Phys Rev. D 86, 010001 (2012)CrossRefADSGoogle Scholar
  17. 17.
    Deur, A.: Nucl. Phys. A 755, 353 (2005)CrossRefADSGoogle Scholar
  18. 18.
    Deur, A., et. al.: Phys. Lett. B 650, 244 (2007)CrossRefADSGoogle Scholar
  19. 19.
    Landau, L.D., Lifshits, E.M. Field Theory, Nauka Moscow (1988)Google Scholar
  20. 20.
    Vilenkin, N.Ya.: Special Functions and Theory of Group Representations, Nauka Moscow (1991)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Theoretical Group, Experimental Physics DepartmentState Polytechnical UniversitySankt-PetersburgRussia

Personalised recommendations