Advertisement

International Journal of Theoretical Physics

, Volume 54, Issue 8, pp 2952–2968 | Cite as

M Times Photon Subtraction-Addition Coherent Superposition Operated Odd-Schrődinger-cat State: Nonclassicality and Decoherence

  • Li Huang
  • Qin GuoEmail author
  • Li-ying Jiang
  • Ge Chen
  • Xue-xiang Xu
  • Wen Yuan
Article
  • 118 Downloads

Abstract

We introduce a new non-Gaussian state (MCSO-OSCS), generated by m times coherent superposition operation acos θ + a sin θ (MCSO) on odd-Schrődinger-cat state |α 0〉 − | − α 0〉(OSCS), whose normalized constant is shown to be related to Hermite polynomials. We investigate the nonclassical properties of the MCSO-OSCS through Mandel’s Q-parameter, quadrature squeezing, the photocount distribution and Wigner function (WF), which is turned out to be influenced by parameters m, θ and α 0. Especially the volume of negative region of WF could increase through controlling the parameters m, θ and α 0. We also investigate the decoherence of the MCSO-OSCS in terms of the fadeaway of the negativity of WF in a thermal environment.

Keywords

Non-Gaussian state Wigner function Coherent superposition operation odd-Schrődinger-cat state Decoherence 

Notes

Acknowledgments

This project was supported by the National Natural Science Foundation of China (Nos.11364021, 11364022, 11264016) and the Natural Science Foundation of Jiangxi Province of China (No.20142BAB202004) as well as the Research Foundation of the Education Department of Jiangxi Province of China (Nos.GJJ12171, GJJ12172).

References

  1. 1.
    Kim, M.S.: Recent developments in photon-level operations on travelling light fields. J. Phys. B 41, 133001 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    Asboth, J.K., Calsamiglia, J., Ritsch, H.: Computable measure of nonclassicality for light. Phys. Rev. Lett. 94, 173602–1–173602-4 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    Kim, M.S., Park, E., Knight, P.L., Jeong, H.: Nonclassicality of a photon-subtracted Gaussian field. Phys. Rev. A 71, 043805 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    Hu, L.-Y., Zhang, Z.-M.: Statistical properties of coherent photon-added two-mode squeezed vacuum and its inseparability. J. Opt. Soc. Am. B 30(3), 518–529 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    Guo, Q., Huang, L., Hu, L.-Y., Xu, X.-X., Zhang, H.-L.: Nonclassicality of coherent photon-subtracted two single-modes squeezed vacuum state. Int. J. Theor. Phys. 52, 2886–2903 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Parigi, V., Zavatta, A., Kim, M., Bellini, M.: Probing quantum commutation rules by addition and subtraction of single photons to/from a light field. Science 317, 1890 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    Boyd, R.W., Chan, K.W., O’Sullivan, M.N.: Quantum weirdness in the lab. Science 317, 1874 (2007)CrossRefGoogle Scholar
  8. 8.
    Hu, L.-Y., Xu, X.-X., Wang, Z.-S., Xu, X.-F.: Photon-subtracted squeezed thermal state: nonclassicality and decoherence. Phys. Rev. A 82, 043842 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    Nha, H., Carmichael, H.J.: Proposed test of quantum nonlocality for continuous variables. Phys. Rev. Lett. 93, 020401 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    Takahashi, H., Neergaard-Nielsen, J.S., Takeuchi, M., Takeoka, M., Hayasaka, K., Furusawa, A., Sasaki, M.: Entanglement distillation from Gaussian input states. Nat. Photon. 4, 178 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    Agarwal, G.S., Tara, K.: Nonclassical properties of states generated by the excitations on a coherent state. Phys. Rev. A 43, 492 (1991)ADSCrossRefGoogle Scholar
  12. 12.
    Wenger, J., Tualle-Brouri, R., Grangier, P.: Non-Gaussian statistics from individual pulses of squeezed light. Phys. Rev. Lett. 92, 153601 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    Zavatta, A., Viciani, S., Bellini, M.: Quantum-to-classical transition with single-photon-added coherent states of light. Science 306, 660 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    Lee, S.-Y., Nha, H.: Quantum state engineering by a coherent superposition of photon subtraction and addition. Phys. Rev. A 82, 053812 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    Xu, X.-X., Yuan, H.-C., Hu, L.-Y., Fan, H.-Y.: Statistical properties of a generalized photon-modulated thermal state. J. Phys. A: Math. Theor. 44, 445306 (2011)MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    Yuan, H.-C., Xu, X.-X., Fan, H.-Y.: Generalized photon-added coherent state and its quantum statistical properties. Chin. Phys. B 19, 104205 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    Dodonov, V.V., Malkon, I.A., Man’ko, V.I.: Even and odd coherent states and excitations of a singular oscillator. Physica 72, 597 (1974)MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    Wenger, J., Hafezi, M., Grosshans, F., Tualle-Brouri, R., Grangier, P.: Maximal violation of Bell inequalities using continuous-variable measurements. Phys. Rev. A 67, 012105 (2003)ADSCrossRefGoogle Scholar
  19. 19.
    Jeong, H., Son, W., Kim, M.S., Ahn, D., Brukner, Č.: Quantum nonlocality test for continuous-variable states with dichotomic observables. Phys. Rev. A 67, 012106 (2003)ADSCrossRefGoogle Scholar
  20. 20.
    Ralph, T.C., Gilchrist, A., Milburn, G.J., Munro, W.J., Glancy, S.: Quantum computation with optical coherent states. Phys. Rev. A 68, 042319 (2003)ADSCrossRefGoogle Scholar
  21. 21.
    Jeong, H., Kim, M.S., Lee, J.: Quantum-information processing for a coherent superposition state via a mixed entangled coherent channel. Phys. Rev. A 64, 052308 (2001)ADSCrossRefGoogle Scholar
  22. 22.
    Munro, W.J., Nemoto, K., Milburn, G.J., Braunstein, S.L.: Weak-force detection with superposed coherent states. Phys. Rev. A 66, 023819 (2002)ADSCrossRefGoogle Scholar
  23. 23.
    Joo, J., Munro, W.J., Spiller, T.P.: Quantum metrology with entangled coherent states. Phys. Rev. Lett. 107, 083601 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    Ourjoumtsev, A., Jeong, H., Tualle-Brouri, R., Grangier, P.: Generation of optical ‘Schrődinger cats’ from photon number states. Nature 448, 784 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    Takahashi, H., Wakui, K., Suzuki, S., Takeoka, M., Hayasaka, K., Furusawa, A., Sasaki, M.: Generation of large-amplitude coherent-state superposition via Ancilla-assisted photon subtraction. Phys. Rev. Lett. 101, 233605 (2008)ADSCrossRefGoogle Scholar
  26. 26.
    Ourjoumtsev, A., Ferreyrol, F., Tualle-Brouri, R., Grangier, P.: Preparation of non-local superpositions of quasi-classical light states. Nat. Phys. 5, 189 (2009)CrossRefGoogle Scholar
  27. 27.
    Gerrits, T., Glancy, S., Clement, T.S., Calkins, B., Lita, A.E., Miller, A.J., Migdall, A.L., Nam, S.W., Mirin, R.P., Knill, E.: Generation of optical coherent-state superpositions by number-resolved photon subtraction from the squeezed vacuum. Phys. Rev. A 82, 031802 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    Lee, C.-W., Lee, J., Nha, H., Jeong, H.: Generating a Schrődinger-cat-like state via a coherent superposition of photonic operations. Phys. Rev. A 85, 063815 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    Cai, Z.-B, Xu, B., Zhou, B., Wang, Z.-Y., Yang, Y.-F.: Nonclassical properties of states engineered via coherent operation of photon subtraction and addition on superpositions of coherent states. Opt. Commun. 311, 229–233 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    Rainville, E.D.: Special Functions. MacMillan, New York (1960)zbMATHGoogle Scholar
  31. 31.
    Klauder, J.R., Skargerstam, B.S.: Coherent States. World Scientific, Singapore (1985)CrossRefzbMATHGoogle Scholar
  32. 32.
    Fan, H.-Y., Lu, H.-L., Fan, Y.: Newton–Leibniz integration for ket–bra operators in quantum mechanics and derivation of entangled state representations. Ann. Phys. 321, 480 (2006)MathSciNetADSCrossRefzbMATHGoogle Scholar
  33. 33.
    Glauber, R.J.: The Quantum Theory of Optical Coherence. Phys. Rev. 130, 2529 (1963)MathSciNetADSCrossRefGoogle Scholar
  34. 34.
    Glauber, R.J.: Coherent and incoherent states of the radiation field. Phys. Rev. 131, 2766 (1963)MathSciNetADSCrossRefGoogle Scholar
  35. 35.
    Marek, P., Jeong, H., Kim, M.S.: Generating “squeezed” superpositions of coherent states using photon addition and subtraction. Phys. Rev. A 78, 063811 (2008)ADSCrossRefGoogle Scholar
  36. 36.
    Agarwal, G.S., Tara, K.: Nonclassical character of states exhibiting no squeezing or sub-Poissonian statistics. Phys. Rev. A 46, 485 (1992)ADSCrossRefGoogle Scholar
  37. 37.
    Hong, C.K., Mandel, L.: Generation of higher-order squeezing of quantum electromagnetic fields. Phys. Rev. A 32, 974 (1985)ADSCrossRefGoogle Scholar
  38. 38.
    Lee, J., Kim, J., Nha, H.: Demonstrating higher-order nonclassical effects by photon-added classical states: realistic schemes. J. Opt. Soc. Am. B, Opt. Phys. 26, 1363 (2009)ADSCrossRefGoogle Scholar
  39. 39.
    Orszag, M.: Quantum Optics. Springer, Berlin (2000)CrossRefzbMATHGoogle Scholar
  40. 40.
    Fan, H.-Y., Hu, L.-Y.: Two quantum-mechanical photocount formulas. Opt. Lett. 33, 443 (2008)ADSCrossRefGoogle Scholar
  41. 41.
    Wigner, E.P.: On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749–759 (1932)ADSCrossRefGoogle Scholar
  42. 42.
    Fan, H.-Y., Zaidi, H.R.: Application of IWOP technique to the generalized Weyl correspondence. Phys. Lett. A 124, 303–307 (1987)MathSciNetADSCrossRefGoogle Scholar
  43. 43.
    Schleich, W.P.: Quantum Optics in Phase Space. Wiley-VCH, Weinheim (2001)CrossRefzbMATHGoogle Scholar
  44. 44.
    Bialynicki-Birula, I., Cirone, M.A., Dahl, J.P., Fedorov, M., Schleich, W.P.: In- and outbound spreading of a free-particle s-wave. Phys. Rev. Lett. 89, 0604041 ((2002))CrossRefGoogle Scholar
  45. 45.
    Jeong, H., Lee, J., Kim, M.S.: Dynamics of nonlocality for a two-mode squeezed state in a thermal environment. Phys. Rev. A 61, 052101 (2000)ADSCrossRefGoogle Scholar
  46. 46.
    Hu, L.-Y., Xu, X.-X., Fan, H.-Y.: Statistical properties of photon-subtracted two-mode squeezed vacuum and its decoherence in thermal environment. J. Opt. Soc. Am. B, Opt. Phys. 27, 286–299 (2010)ADSCrossRefGoogle Scholar
  47. 47.
    Fan, H.-Y., Hu, L.-Y.: Entangled State Representation of Quantum Decoherence of the Open System. Shanghai Jiaotong University Press, Shanghai (2010)Google Scholar
  48. 48.
    Hu, L.-Y., Chen, F., Wang, Z.-S., Fan, H.-Y.: Time evolution of distribution functions in dissipative environments. Chin. Phys. B 20, 074204 (2011)ADSCrossRefGoogle Scholar
  49. 49.
    Hu, L.-Y., Wang, Q., Wang, Z.-S., Xu, X.-X.: Kraus operator-sum representation and time evolution of distribution functions in phase-sensitive reservoirs. Int. J. Theor. Phys. 51, 331 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Huang, L., Guo, Q., Xu, X.-X., Yuan, W.: Nonclassicality and decoherence of the variable arcsine state in a thermal environment. Int. J. Theor. Phys. 53, 6 (2014)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Li Huang
    • 1
  • Qin Guo
    • 1
    • 2
    Email author
  • Li-ying Jiang
    • 1
  • Ge Chen
    • 1
  • Xue-xiang Xu
    • 1
    • 2
  • Wen Yuan
    • 1
    • 2
  1. 1.College of Physics and Communication ElectronicsJiangxi Normal UniversityNanchangChina
  2. 2.Key Laboratory of Optoelectronic and Telecommunication of JiangxiNanchangChina

Personalised recommendations