Advertisement

International Journal of Theoretical Physics

, Volume 53, Issue 11, pp 3901–3909 | Cite as

Torsion and Particle Horizons

  • M. I. Wanas
  • H. A. Hassan
Article

Abstract

Inthe present work we show that the existence of non-vanishing torsion field may solve, at least, one of the problems FRW-cosmology, the particle horizons problem. The field equations of general relativity (GR) are written in a space having non-vanishing torsion, the absolute parallelism (AP) space. An AP-Structure, satisfying the cosmological principle, is used to construct a world model. Energy density and pressure, purely induced by torsion, are defined from the building blocks of the AP-geometry using GR. When these quantities are used in the FRW-dynamical equations, we get a world model free from particle horizons.

Keywords

Cosmology Geeral relativity Inflation 

References

  1. 1.
    Hubble, E.: A relation between distance and radial velocity among extra-galactic nebulae. Proc. Natio. Acad. Sci. 15, 168 (1929)CrossRefzbMATHADSGoogle Scholar
  2. 2.
    Bethe, H., Gamow, G.: The origin of chemical elements. Phys. Rev. 73, 803 (1948)CrossRefADSGoogle Scholar
  3. 3.
    Alpher, R. A., Herman, R.C.: On the relative abundance of the elements. Phys. Rev. 74, 1737 (1948)CrossRefADSGoogle Scholar
  4. 4.
    Penzias, A. A., Wilson, R. W: A Measurement of excess antenna temperature at 4080 Mc/s. Astrophys. J. 142, 419 (1965)CrossRefADSGoogle Scholar
  5. 5.
    Riess, A. G. et al.: Observational evidence from supernovae for and accelerating universe and a cosmological constant. Astron. J. 116, 1009 (1998). arXiv:astro-ph/9805201 CrossRefADSGoogle Scholar
  6. 6.
    Perlmutter, S. et al.: Measurements of omega and lambda from 42 high redshift supernovae. Astrophys. J. 517, 565 (1999)CrossRefADSGoogle Scholar
  7. 7.
    Arbab, A, I.: Cosmic acceleration with a positive cosmological constant. Class. Quant. Gravi. 20, 1 (2003). arXiv:gr-qc/9905066v5
  8. 8.
    Sotiriou, T. P., Faraoni, V: f(R) Theories of gravity. Rev. Mod. Phys. 82, 451 (2010). arXiv:0805.1726MathSciNetCrossRefzbMATHADSGoogle Scholar
  9. 9.
    Faraoni, V.: f(R) Gravity: successes and challenges (2008), arXiv:gr-qc/0810.2602
  10. 10.
    Guth, A. H.: Inflationary universe, a possible solution to the horizon and flatness problems. Phys. Rev. D 23, 347 (1981)CrossRefADSGoogle Scholar
  11. 11.
    Linde, A. D.: A new inflationary Universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems. Phys. Lett. B 108, 389 (1982)MathSciNetCrossRefADSGoogle Scholar
  12. 12.
    Trodden, M.: Baryogenesis and the new cosmology. Pramana 62, 451 (2004). arXiv:hep-ph/0302151 CrossRefADSGoogle Scholar
  13. 13.
    Hou, W.-S., Kohda, M.: Towards reviving electroweak baryogenesis with a fourth generation. Adv. High Ener. Phys. 2013, 9 (2013)Google Scholar
  14. 14.
    Myrzakulov, R.: Accelerating universe from F(T) gravity. Eur.Phys.J. C71, 1752 (2011). arXiv:1006.1120 CrossRefADSGoogle Scholar
  15. 15.
    Wu, P, Yu, H.: The stability of the Einstein static state in F(T) gravity. Phys.Lett. B703, 223 (2011). arXiv:1108.5908MathSciNetCrossRefADSGoogle Scholar
  16. 16.
    Nashed, G.G.L.: Spherically symmetric solutions on a non-trivial frame in F(T) theories of gravity. Chin. Phys. Lett 29, 50402 (2012)CrossRefGoogle Scholar
  17. 17.
    Dent, J. B., Dutta, S., Saridakis, E. N.: f(T) gravity mimicking dynamical dark energy. Background and perturbation analysis. JCAP 1101, 9 (2011). arXiv:1010.2215v2 CrossRefADSGoogle Scholar
  18. 18.
    Poplawski, N. J.: Cosmology with torsion - an alternative to cosmic inflation. Phys. Lett. B694, 181 (2010). arXiv:1007.0587 MathSciNetCrossRefADSGoogle Scholar
  19. 19.
    Ratbay Myrzakulov: Cosmology in F(R, T) gravity. Eur. Phys. J. C72, 2203 (2012). arXiv:1207.1039v3 CrossRefGoogle Scholar
  20. 20.
    Wanas, M.I.: Absolute parallelism geometry: developments, applications and problems. Stud. Cercet. Stiin. Ser. Mat, 10, 297 (2002). arXiv:0209050 Google Scholar
  21. 21.
    Wanas, M.I.: Parameterized absolute parallelism: a geometry for physical applications. Turk. J. Phys. 24, 473 (2000). arXiv:gr-qc/0010099 Google Scholar
  22. 22.
    Youssef, N. L., Sid-Ahmed, A. M.: Linear connections and curvature tensors in the geometry of parallelizable manifolds. Rept. Math. Phys. 60(39) (2007). arXiv:gr-qc/0604111
  23. 23.
    Mikhail, F. I: Tetrad vector fields and generalizing the theory of relativity. Ain Shams. Sci. Bull 6, 76 (1962)Google Scholar
  24. 24.
    Souza, R.S., Opher, R.: Origin of 1015−1016G magnetic fields in the central engine of gamma ray bursts. JCAP 1002, 22 (2010). aXriv: astro-ph/0910.5258.CrossRefGoogle Scholar
  25. 25.
    Souza, R. S., Opher, R.: Origin of intense magnetic fields near black holes due to non-minimal gravitational-electromagnetic coupling. Phys. Lett. B705, 292–293 (2011). aXriv: astro-ph/0804.4895 CrossRefADSGoogle Scholar
  26. 26.
    Wanas, M.I.: A self-consistent world model. Astrophys. Space Sci. 154, 165 (1989)MathSciNetCrossRefADSGoogle Scholar
  27. 27.
    Wanas, M. I.: On the relation between mass and charge: a pure geometric approach. Int. J. Geom. Meth. Mod. Phys. 4, 373–388 (2008). arXiv:gr-qc/703036 MathSciNetCrossRefADSGoogle Scholar
  28. 28.
    Robertson, H.P: Groups of motion in spaces admitting absolute parallelism. Ann. Math. Princ. 33, 496 (1932)CrossRefGoogle Scholar
  29. 29.
    Wanas, M. I.: Geometrical structures for cosmological applications. Astrophys. Space Sci. 127, 21 (1986)CrossRefADSGoogle Scholar
  30. 30.
    Mikhail, F. I., Wanas, M. I.: A generalized field theory. II. Linearized field equations. Int. Jour. Theoret. Phys 20, 671 (1981)CrossRefGoogle Scholar
  31. 31.
    Garcia-Bellido, J.: Astrophysics and cosmology. (1999) arXiv:hep-ph/0004188
  32. 32.
    Wanas, M. I.: A generalized field theory: charged spherical symmetric solutions. Int. J. Theoret. Phys. 24, 639 (1985)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Mikhail, F. I., Wanas, M. I., Hindawi, A., Lashin , E. I.: Energy-momentum complex in Moller’s tetrad theory of gravitation. Int. J. Theoret. Phys. 32, 1627 (1993)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Astronomy Department, Faculty of ScienceCairo UniversityGizaEgypt
  2. 2.Egyptian Relativity Group (ERG)CairoEgypt

Personalised recommendations