Advertisement

International Journal of Theoretical Physics

, Volume 53, Issue 11, pp 3698–3718 | Cite as

A Tutorial Review on Fractal Spacetime and Fractional Calculus

  • Ji-Huan He
Article

Abstract

This tutorial review of fractal-Cantorian spacetime and fractional calculus begins with Leibniz’s notation for derivative without limits which can be generalized to discontinuous media like fractal derivative and q-derivative of quantum calculus. Fractal spacetime is used to elucidate some basic properties of fractal which is the foundation of fractional calculus, and El Naschie’s mass-energy equation for the dark energy. The variational iteration method is used to introduce the definition of fractional derivatives. Fractal derivative is explained geometrically and q-derivative is motivated by quantum mechanics. Some effective analytical approaches to fractional differential equations, e.g., the variational iteration method, the homotopy perturbation method, the exp-function method, the fractional complex transform, and Yang-Laplace transform, are outlined and the main solution processes are given.

Keywords

Fractal spacetime Fractional differential equation Fractal derivative Q-derivative Cantor set El Naschie mass-energy equation E-infinity theory Hilbert cube Kaluza-Klein spacetime Zero set Empty set Fractal stock movement 

Notes

Acknowledgments

The work is supported by PAPD (A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions), National Natural Science Foundation of China under Grant Nos.10972053 and 51203114, Special Program of China Postdoctoral Science Foundation Grant No. 2013T60559, China Postdoctoral Science Foundation Grant No.2012M521122.

References

  1. 1.
    El Naschie, M.S., Helal, M.A., Marek-Crnjac, L., et al.: Transfinite corrections as a Hardy type quantum entanglement. Fract. Spacet. Noncommut. Geom. 2, 499–102 (2012)Google Scholar
  2. 2.
    El Naschie, M.S., Marek-Crnjac, L., He, J.H., Helal, M.A.: Computing the missing dark energy of a clopen universe which is its own multiverse in addition to being both flat and curved. Fract. Spacet. Noncommut. Geom. 3, 3–10 (2013)Google Scholar
  3. 3.
    El Naschie, M.S., Olsen, S., He, J.H.: Dark energy of the quantum Hawking-Hartle wave of the cosmos from the holographic boundary and Lie symmetry groups – Exact computation and physical interpretation. Fract. Spacet. Noncommut. Geom. 3, 11–20 (2013)Google Scholar
  4. 4.
    El Naschie, M.S.: A unified Newtonian-relativistic quantum resolution of the supposedly missing dark energy of the cosmos and the constancy of the speed of light. Int. J. Mod. Nonl. Theory Applicat. 2, 43–54 (2013)CrossRefGoogle Scholar
  5. 5.
    El Naschie, M.S.: The quantum gravity Immirzi parameter-A general physical and topological interpretation. Gravit. & Cosmol 19, 151–155 (2013)MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    Marek-Crnjac, L., El Naschie, M.S., He, J.H.: Chaotic Fractals at the Root of Relativistic Quantum Physics and Cosmology. Int. J. Mod. Nonlinear Theory Appl. 2, 78–88 (2013)CrossRefGoogle Scholar
  7. 7.
    El Naschie, M.S., Olsen, S., He, J.H.: A Resolution of Cosmic Dark Energy via a Quantum Entanglement Relativity Theory Dark energy of the quantum Hawking-Hartle wave of the cosmos from the holographic boundary and Lie symmetry groups – Exact computation and physical interpretation. Fract. Spacetime Noncommut. Geom. Quant. High Energ. Phys. 3, 11–20 (2013)Google Scholar
  8. 8.
    El Naschie, M.S., Marek-Crnjac, L., He, Ji-Huan, Helal, Mohamed Atef: Computing the missing dark energy of a clopen universe which is its own multiverse in addition to being both flat and curved. Fract. Spacetime Noncommut. Geom. Quant. High Energ. Phys. 3, 3–10 (2013)Google Scholar
  9. 9.
    Finkelstein, D.R.: Relativity Quantum: A Synthesis of the Ideas of Einstein and Heisenberg. Springer-Verlag (1996)Google Scholar
  10. 10.
    Finkelstein, D.: Quantum Sets and Clifford Algebras. Int. J. Theor. Phys. 21, 489–503 (1982)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    El Naschie, M.S.: Nanotechnology for the developing world. Chaos Soliton. Fract. 30, 769–773 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    El Naschie, M.S.: Chaos and fractals in nano and quantum technology. Chaos Soliton. Fract. 9, 1793–1802 (1998)MATHADSCrossRefGoogle Scholar
  13. 13.
    He, J.H.: An elementary introduction to recently developed asymptotic methods and nanomechanics in textile engineering. Int. J. Mod. Phys. B 22(21), 3487–3578 (2008)MATHADSCrossRefGoogle Scholar
  14. 14.
    He, J.H.: The Smaller, the Better: From the Spider-Spinning to Bubble-Electrospinning. Acta Phys. Pol. A 121, 254–256 (2012)Google Scholar
  15. 15.
    He, J.H., Liu, Y.: A hierarchy of motion in electrospinning process and E-infinity nanotechnology. J. Poly. Eng. 28, 101–114 (2008)Google Scholar
  16. 16.
    El Naschie, M.S.: Elementary prerequisites for E-infinity (Recommended background readings in nonlinear dynamics, geometry and topology). Chaos Soliton. Fract. 30, 579–605 (2006)MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    El Naschie, M.S.: A review of E infinity theory and the mass spectrum of high energy particle physics. Chaos Soliton. Fract. 19, 209–236 (2004)MATHADSCrossRefGoogle Scholar
  18. 18.
    Haven, E.: It’s lemma with quantum calculus (q-calculus): some implications. Found. Phys. 41, 529–537 (2011)MathSciNetMATHADSCrossRefGoogle Scholar
  19. 19.
    Kac, V., Cheung, P.: Quantum Calculus. Springer, Berlin (2002)MATHCrossRefGoogle Scholar
  20. 20.
    Ord, G.N.: Fractals and the quantum classical boundary. Chaos Solit. Fract. 10, 1281–1294 (1999)MathSciNetMATHADSCrossRefGoogle Scholar
  21. 21.
    Ord, G.N.: Fractal space-time and the statistical mechanics of random walks. Chaos Solit. Fract. 7, 821–843 (1996)MathSciNetMATHADSCrossRefGoogle Scholar
  22. 22.
    El Naschie, M.S.: Deriving the curvature of fractal-Cantorian spacetime from first principles. Chaos Soliton. Fract. 41, 2259–2261 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    He, J.H.: Frontier of Modern Textile Engineering and Short Remarks on Some Topics in Physics. Int. J. Nonlin. Sci. 11, 555–563 (2010)Google Scholar
  24. 24.
    He, J.H.: Hilbert cube model for fractal spacetime. Chaos Soliton. Fract. 42, 2754–2759 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    El Naschie, M.S.: Quantum loops, wild topology and fat Cantor sets in transfinite high-energy physics, Chaos. Solitons Fractals 13, 1167–1174 (2002)MathSciNetMATHADSCrossRefGoogle Scholar
  26. 26.
    El Naschie, M.S.: The VAK of vacuum fluctuation, Spontaneous self-organization and complexity theory interpretation of high energy particle physics and the mass spectrum. Chaos Soliton. Fract. 18, 401–420 (2003)MATHADSCrossRefGoogle Scholar
  27. 27.
    El Naschie, M.S.: Kaluza-Klein unification - Some possible extensions. Chaos Soliton. Fract. 37, 16–22 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    He, J.H.: Approximate analytical solution for seepage flow with fractional derivatives in porous media. Comput. Meth. Appl. Mech. Eng. 167, 57–68 (1998)MATHADSCrossRefGoogle Scholar
  29. 29.
    Fan, J., He, J.H.: Fractal derivative model for air permeability in hierarchic porous media. Abstr. Appl. Anal., 354701 (2012)Google Scholar
  30. 30.
    Zhao, L., Wu, G.C., He, J.H.: Fractal Approach to Flow through Porous Material. Int. J. Nonlin. Sci. Num. 10, 897–901 (2009)CrossRefGoogle Scholar
  31. 31.
    Fan, J., He, J. H.: Biomimic design of multi-scale fabric with efficient heat transfer property. Therm. Sci. 16, 1349–1352 (2012)CrossRefGoogle Scholar
  32. 32.
    Fan, J., Shang, X.M.: Water permeation in the branching channel net of wool fiber. Heat Transf. Res. 44, 465–472 (2013)CrossRefGoogle Scholar
  33. 33.
    Fan, J., Shang, X.M.: Fractal heat transfer in wool fiber hierarchy. Heat Transf. Res. 44, 399–407 (2013)CrossRefGoogle Scholar
  34. 34.
    Chen, R.X., Liu, F. J., He, J.H., Fan, J.: Silk Cocoon: “Emperor’s new clothes” for pupa: fractal nano-hydrodynamical approach. J. Nano Res. 22, 65–70 (2013)CrossRefGoogle Scholar
  35. 35.
    He, J.-H., Liu, F.J.: Local fractional variational iteration method for fractal heat transfer in silk cocoon hierarchy. Nonlinear Sci. Lett. A 4, 15–20 (2013)Google Scholar
  36. 36.
    Majumder, M., Chopra, N., Andrews, R., Hinds, B.J.: Nanoscale hydrodynamics: enhanced flow in carbon nanotubes. Nat. 438, 44 (2005)ADSCrossRefGoogle Scholar
  37. 37.
    Hummer, G.: Water, proton, and ion transport: from nanotubes to proteins. Mol. Phys. 105, 201–207 (2007)ADSCrossRefGoogle Scholar
  38. 38.
    Whitby, M., Quirke, N.: Fluid flow in carbon nanotubes and nanopipes. Nat. Nanotechnol. 2, 87–94 (2007)ADSCrossRefGoogle Scholar
  39. 39.
    He, J.H.: A new resistance formulation for carbon nanotubes. J. Nanomater. 2008, 954874 (2008)Google Scholar
  40. 40.
    He, J.H.: Nanoscale flow: reliable, efficient, and promising. Therm. Sci. 16(5), vii–viii (2012)CrossRefGoogle Scholar
  41. 41.
    He, J.H., Kong, H.Y., Yang, R.R., et al.: Review on fiber morphology obtained bu bubble electrospinning and blown bubble spinning. Therm. Sci. 16(5), 1263–1279 (2012)CrossRefGoogle Scholar
  42. 42.
    Kong, H.Y., He, J.H.: The fractal harmonic law and its application to swimming suit. Therm. Sci. 16(5), 1467–1471 (2012)CrossRefGoogle Scholar
  43. 43.
    Kong, H.Y., He, J.H.: A novel friction law. Therm. Sci. 16(5), 1529–1533 (2012)CrossRefGoogle Scholar
  44. 44.
    Yang, X.J., Baleanu, D.: Fractal heat conduction problem solved by local fractional variational iteration method. Therm. Sci. 17 (2013)Google Scholar
  45. 45.
    Yang, A.M., Zhang, Y.Z., Yue, Y.Z.: The Yang-Fourier transforms to heat conduction in a semi-infinite fractal bar. Therm. Sci. 17, 707–713 (2013)CrossRefGoogle Scholar
  46. 46.
    Liu, C.F., Kong, S.S., Yuan, S.J.: Reconstructive schems for variational iteration method within Yang-Laplace transform with application to fractal heat conduction problem. Therm. Sci. 17, 715–721 (2013)CrossRefGoogle Scholar
  47. 47.
    He, J.H.: Variational iteration method - a kind of non-linear analytical technique: Some examples. Int. J. Non-L. Mech. 34, 699–708 (1999)MATHCrossRefGoogle Scholar
  48. 48.
    He, J.H.: Variational iteration method - Some recent results and new interpretations. J. Comput. Appl. Math. 207, 3–17 (2007)MathSciNetMATHADSCrossRefGoogle Scholar
  49. 49.
    He, J.H., Wu, X.H.: Variational iteration method: New development and applications. Comput. Math. Applicat. 54, 881–894 (2007)MathSciNetMATHCrossRefGoogle Scholar
  50. 50.
    He, J.H.: A short remark on fractional variational iteration method. Phys. Lett. A 375, 3362–3364 (2011)MathSciNetMATHADSCrossRefGoogle Scholar
  51. 51.
    He, J.H., Wu, G.C., Austin, F.: The variational iteration method which should be followed. Nonlinear Science Letters A 1, 1–30 (2011)MATHGoogle Scholar
  52. 52.
    Wu, G.C.: New trends in the variational iteration method. Communications in Fractional Calculus 2, 59–75 (2011)Google Scholar
  53. 53.
    Hosseini, S.M.M., Mohyud-Din, S.T., Ghaneai, H.: Variational iteration method for Hirota-Satsuma coupled KdV equation using auxiliary parameter. Int. J. Numer. Method. H. 22, 277–286 (2012)MathSciNetCrossRefGoogle Scholar
  54. 54.
    Wu, G.C.: Laplace transform overcoming principal drawbacks in application of the variational iteration method to fractional heat equations. Therm. Sci. 16, 1257–1261 (2012)CrossRefGoogle Scholar
  55. 55.
    Ghaneai, H., Hosseini, M.M.: S.T. Mohyud-Din:Modified variational iteration method for solving a neutral functional-differential equation with proportional delays. Int. J. Numer. Method. H. 22, 1086–1095 (2012)MathSciNetCrossRefGoogle Scholar
  56. 56.
    Matinfar, M., Ghasemi, M.: Application of variational iteration method to nonlinear heat transfer equations using He’s polynomials. Int. J. Numer. Method. H. 23, 520–531 (2013)MathSciNetCrossRefGoogle Scholar
  57. 57.
    He, J.H.: Asymptotic methods for Solitary Solutions and Compactons. Abstract and Applied Analysis, 916793 (2012)Google Scholar
  58. 58.
    He, J.H.: Some Asymptotic Methods for Strongly Nonlinear Equations. Int. J. Mod. Phys. B 20(10), 1141–1199 (2006)MATHADSCrossRefGoogle Scholar
  59. 59.
    Jumarie, G.: Fractional partial differential equations and modified Riemann- Liouville derivative new methods for solution. Journal of Applied Mathematics and Computing 24, 31–48 (2007)MathSciNetMATHCrossRefGoogle Scholar
  60. 60.
    Jumarie, G.: The Minkowski’s space–time is consistent with differential geometry of fractional order. Phy. Lett. A 363, 5–11 (2007)MathSciNetMATHADSCrossRefGoogle Scholar
  61. 61.
    Jumarie, G.: Modified Riemann-Liouville Derivative and Fractional Taylor Series of Non-differentiable Functions Further Results. Comp. Math. Appl. 51, 1137–1376 (2006)MathSciNetCrossRefGoogle Scholar
  62. 62.
    Jumarie, G.: From Lagrangian mechanics fractal in space to space fractal Schrodinger’s equation via fractional Taylor’s series. Chaos Soliton. Fract. 41, 1590–1604 (2009)MathSciNetMATHADSCrossRefGoogle Scholar
  63. 63.
    Chen, W., Zhang, X.D., Korošak, D.: Investigation on fractional relaxation-oscillation models. Int. J. Nonl. Sci. Num. 11, 3–9 (2010)Google Scholar
  64. 64.
    Chen, W.: Time-space fabric underlying anomalous diffusion. Chaos Soliton. Fract. 28, 923–929 (2006)MATHADSCrossRefGoogle Scholar
  65. 65.
    He, J.H.: A new fractal derivation. Therm. Sci. 15, S145-S147 (2011)Google Scholar
  66. 66.
    Wu, G.C.: Variational Iteration Method for q-Difference Equations of Second Order. J. Appl. Math 2012, 102850 (2012)Google Scholar
  67. 67.
    Wu, G.C.: Variational iteration method for q-diffusion equations on time scales, Heat Transfer Research Accepted. In pressGoogle Scholar
  68. 68.
    Liu, H.K.: Application of the variational iteration method to strongly nonlinear q-difference equations. J. Appl. Math. 2010, 704138 (2010)Google Scholar
  69. 69.
    Draganescu GE. Application of a variational iteration method to linear and nonlinear viscoelastic models with fractional derivatives. J. Math. Phys. 47, 082902 (2006)MathSciNetADSCrossRefGoogle Scholar
  70. 70.
    Odibat, Z.M., Momani, S.: Application of variational iteration method to Nonlinear differential equations of fractional order. Int. J. Nonlin. Sci. Num. 7, 27–34 (2006)MathSciNetCrossRefGoogle Scholar
  71. 71.
    Shawagfeh, N.T.: Analytical approximate solutions for nonlinear fractional differential equations. Appl. Math. Comput. 131, 517–529 (2002)MathSciNetMATHCrossRefGoogle Scholar
  72. 72.
    Bildik, N., Konuralp, A.: The use of Variational Iteration Method, Differential Transform Method and Adomian Decomposition Method for solving different types of nonlinear partial differential equations. Int. J. Nonlinear Sci. Num. 7, 65–70 (2006)MathSciNetGoogle Scholar
  73. 73.
    He J.H.: A generalized poincare-invariant action with possible application in strings and E-infinity theory. 4 39, 1667–1670 (2009)Google Scholar
  74. 74.
    Das, S.: Solution of Fractional Vibration Equation by the Variational Iteration Method and Modified Decomposition Method. Int. J. Nonlin. Sci. Num. 9(4), 361–366 (2008)CrossRefGoogle Scholar
  75. 75.
    Odibat, Z., Momani, S.: Applications of the Variational Iteration and the Homotopy Perturbation Methods to Fractional Evolution Equations. Topol. Method. Nonl. An. 31, 227–234 (2008)MathSciNetMATHGoogle Scholar
  76. 76.
    He, J.H.: Homotopy perturbation technique. Comput. Method. Appl. Mech. Eng. 178, 257–262 (1999)MATHADSCrossRefGoogle Scholar
  77. 77.
    He, J.H.: A coupling method of a homotopy technique and a perturbation technique for non-linear problems. Int. J. Nonlinear Mech. 35, 37–43 (2000)MATHADSCrossRefGoogle Scholar
  78. 78.
    He, J.H.: Homotopy perturbation method with an auxiliary term. Abstr. Appl. Anal., 857612 (2012)Google Scholar
  79. 79.
    He, J.H.: A note on the homotopy perturbation method. Therm. Sci. 14, 565–568 (2010)ADSGoogle Scholar
  80. 80.
    Momani, S., Odibat, Z.: Homotopy perturbation method for nonlinear partial differential equations of fractional order. Phys. Lett. A 365, 345–350 (2007)MathSciNetMATHADSCrossRefGoogle Scholar
  81. 81.
    Gondal, M.A., Khan, M.: Homotopy Perturbation Method for Nonlinear Exponential Boundary Layer Equation using Laplace Transformation, He’s Polynomials and Pade Technology He’s Polynomials and Pade Technology. Int. J. Nonlin. Sci. Num. 11, 1145–1153 (2010)Google Scholar
  82. 82.
    Yan, L.M.: Modified homotopy perturbation method coupled with Laplace transform for fractional heat transfer and porous media equations. Therm. Sci. 17, 1409–1414 (2013)CrossRefGoogle Scholar
  83. 83.
    Liu, Y.: Approximate Solutions of Fractional Nonlinear Equations Using Homotopy Perturbation Transformation Method. Abstr. Appl. Anal., 752869 (2012)Google Scholar
  84. 84.
    Ganji, Z.Z., Ganji, D.D., Jafari, H., et al.: Application of the homotopy perturbation method to coupled system of partial differential equations with time fractional derivatives. Topol. Method. Nonl. An. 31, 341–348 (2008)MathSciNetMATHGoogle Scholar
  85. 85.
    Odibat, Z., Momani, S.: Modified homotopy perturbation method: Application to quadratic Riccati differential equation of fractional order. Chaos Soliton. Fract. 36, 167–174 (2008)MathSciNetMATHADSCrossRefGoogle Scholar
  86. 86.
    Momani, S., Odibat, Z.: Comparison between the homotopy perturbation method and the variational iteration method for linear fractional partial differential equations. Comput. Math. Applicat. 54, 910–919 (2007)MathSciNetMATHCrossRefGoogle Scholar
  87. 87.
    Yildirim, A.: An Algorithm for Solving the Fractional Nonlinear Schrodinger Equation by Means of the Homotopy Perturbation Method. Int. J. Nonlin. Sci. Num. 10, 445–450 (2009)Google Scholar
  88. 88.
    Wang, Q.: Homotopy perturbation method for fractional KdV-Burgers equation. Chaos Soliton. Fract. 35, 843–850 (2008)MATHADSCrossRefGoogle Scholar
  89. 89.
    Jafari, H., Momani, S.: Solving fractional diffusion and wave equations by modified homotopy perturbation method. Phys. Lett. A 370, 388–396 (2007)MathSciNetMATHADSCrossRefGoogle Scholar
  90. 90.
    Madani, M., Khan, Y., Mahmodi, Gh., et al.: Application of homotopy perturbation and numerical methods to the circular porous slider. Int. J. Numer. Method. H 22, 705–717 (2012)CrossRefGoogle Scholar
  91. 91.
    Gupta, P.K., Yildirim, A., Rai, K.N.: Application of He’s homotopy perturbation method for multi-dimensional fractional Helmholtz equation. Int. J. Numer. Method. H 22, 424–435 (2012)MathSciNetCrossRefGoogle Scholar
  92. 92.
    Khan, N.A., Ara, A., Mahmood, A.: Numerical solutions of time-fractional Burgers equations A comparison between generalized differential transformation technique and homotopy perturbation method. Int. J. Numer. Method. H 22, 175–193 (2012)MathSciNetCrossRefGoogle Scholar
  93. 93.
    He, J.H, Elagan, S.K.: Li ZB. Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus. Phys. Lett. A 376, 257–259 (2012)MathSciNetMATHADSCrossRefGoogle Scholar
  94. 94.
    Li, Z.B., He, J.H.: Fractional complex transform for fractional differential equations. Math. Comput. Appl. 15, 970–973 (2010)MathSciNetMATHGoogle Scholar
  95. 95.
    Wang, Q.L., He, J.H., Li, Z.B.: Fractional model for heat conduction in polar bear hairs. Therm. Sci. 15, 1–5 (2011)MATHCrossRefGoogle Scholar
  96. 96.
    Li, Z.B., Zhu, W.H., He, J.H.: Exact solutions of time-fractional heat conduction equation by the fractional complex transform. Therm. Sci. 16, 335–338 (2012)CrossRefGoogle Scholar
  97. 97.
    He, J.H., Wu, X.H.: Exp-function method for nonlinear wave equations. Chaos Soliton. Fract. 30, 700–708 (2006)MathSciNetMATHADSCrossRefGoogle Scholar
  98. 98.
    Wu, X.H.: J.H.He: Solitary solutions, periodic solutions and compacton-like solutions using the Exp-function method. Comput. Math. Applicat. 54, 966–986 (2007)MATHCrossRefGoogle Scholar
  99. 99.
    He, J.H.: Exp-function method for fractional differential equations. Int. J. Nonlin. Sci. Num.acceptedGoogle Scholar
  100. 100.
    Zhang, S., Zhang, H.Q.: An Exp-function method for new N-soliton solutions with arbitrary functions of a (2 + 1)-dimensional vcBK system. Comput. Math. Applicat. 61, 1923–1930 (2011)MATHCrossRefGoogle Scholar
  101. 101.
    H.M.Fu, Z.D. Dai, Double Exp-function Method and Application. Int. J. Nonlinear Sci. Num. 10, 927–933 (2009)Google Scholar
  102. 102.
    Bekir, A.: Ahmet Boz, Exact Solutions for a Class of Nonlinear Partial Differential Equations using Exp-Function Method. Int. J. Nonlinear Sci. Num. 8, 505–512 (2007)Google Scholar
  103. 103.
    Domairry, G., Davodi, A.G., Davodi, A.G.: Solutions for the double Sine-Gordon equation by Exp-function, Tanh, and extended Tanh methods. Numer. Meth. Part. D. E. 26, 384—398 (2010)MathSciNetGoogle Scholar
  104. 104.
    Zhang, S.: Exp-function Method: Solitary, Periodic and Rational Wave Solutions of Nonlinear Evolution Equations. Nonlinear Sci. Lett. A 1, 143–146 (2010)Google Scholar
  105. 105.
    Misirli, E., Gurefe, Y.: The Exp-function Method to Solve the Generalized Burgers-Fisher Equation. Nonlinear Sci. Lett. A 1, 323–328 (2010)Google Scholar
  106. 106.
    Zhang, S., Zong, Q.A., Liu, D., Gao, Q.: A Generalized Exp-Function Method for Fractional Riccati Differential Equations. Commun. Fractional Calc. 1, 48–51 (2010)Google Scholar
  107. 107.
    Ghorbani, A.: Beyond Adomian polynomials: He polynomials. Chaos Soliton. Fract. 39, 1486–1492 (2009)MathSciNetMATHADSCrossRefGoogle Scholar
  108. 108.
    A.Ghorbani, J.Saberi-Nadjafi: He’s Homotopy Perturbation Method for Calculating Adomian Polynomials. Int. J. Nonlinear Sci. Num. 8, 229–232 (2007)Google Scholar
  109. 109.
    Ghorbani, A.: Beyond Adomian polynomials: He polynomials. Chaos Soliton. Fract. 39, 1486–1492 (2009)MathSciNetMATHADSCrossRefGoogle Scholar
  110. 110.
    He, J.H.: Comment on “Variational Iteration Method for Fractional Calculus Using He’s Polynomials”. Abstr. Appl. Anal. 2012, 964974 (2012)Google Scholar
  111. 111.
    Noor, M.A., Mohyud-Din, S.T.: Variational iteration method for solving higher-order nonlinear boundary value problems using He’s polynomials. Int. J. Nonlin. Sci. Num. 9, 141–156 (2008)Google Scholar
  112. 112.
    Khan, Y., Mohyud-Din, S.D.: Coupling of He’s Polynomials and Laplace Transformation for MHD Viscous Flow over a Stretching Sheet. Int. J. Nonlin. Sci. Num. 11, 1103–1107 (2010)CrossRefGoogle Scholar
  113. 113.
    Mohyud-Din, S.T., Noor, M.A., Noor, K.I., et al.: On the Coupling of He’s Polynomials and Laplace Transformation. Int. J. Nonlin. Sci. Num. 11, 93–96 (2010)MathSciNetGoogle Scholar
  114. 114.
    Madani, M., Fathizadeh, M., Khan, Y., et al.: On the coupling of the homotopy perturbation method and Laplace transformation. Math. Comput. Model. 53, 1937–1945 (2011)MathSciNetMATHCrossRefGoogle Scholar
  115. 115.
    Khan, Y., Wu, Q.: Homotopy perturbation transform method for nonlinear equations using He’s polynomials. Comput. Math. Applicat. 61, 1963–1967 (2011)MathSciNetMATHCrossRefGoogle Scholar
  116. 116.
    Mishra, H.K., Nagar, A.K.: He-Laplace Method for Linear and Nonlinear Partial Differential Equations. J. Appl. Math. 2012, 180315 (2012)MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.National Engineering Laboratory for Modern SilkCollege of Textile and Clothing Engineering, Soochow UniversitySuzhouChina

Personalised recommendations