International Journal of Theoretical Physics

, Volume 53, Issue 9, pp 2875–2890 | Cite as

Three Solvable Matrix Models of a Quantum Catastrophe

  • Géza Lévai
  • František Růžička
  • Miloslav Znojil
Article

Abstract

Three classes of finite-dimensional models of quantum systems exhibiting spectral degeneracies called quantum catastrophes are described in detail. Computer-assisted symbolic manipulation techniques are shown unexpectedly efficient for the purpose.

Keywords

Quantum theory PT symmetry Finite-dimensional non-Hermitian Hamiltonians Exceptional-point localization Quantum theory of catastrophes Methods of computer algebra 

References

  1. 1.
    Dorey, P., Dunning, C., Tateo, R.: Spectral equivalences, Bethe Ansatz equations, and reality properties in 𝓟𝓣-symmetric quantum mechanics. J. Phys. A: Math. Gen. 34, 5679–5704 (2001)ADSCrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Bender, C.M.: Making sense of non-hermitian Hamiltonians. Rep. Prog. Phys. 70, 947–1018 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    Dorey, P., Dunning, C., Tateo, R.: The ODE/IM correspondence. J. Phys. A: Math. Theor. 40, R205–R283 (2007)ADSCrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Mostafazadeh, A.: Pseudo-Hermitian representation of quantum mechanics. Int. J. Geom. Meth. Mod. Phys. 7, 1191–1306 (2010)MATHMathSciNetGoogle Scholar
  5. 5.
    Znojil, M.: Three-Hilbert-space formulation of Quantum Mechanics. Symmetry, Integrability and Geometry: Methods and Applications, vol. 5, 001, p. 19 (2009)Google Scholar
  6. 6.
    Bender, C.M., Boettcher, S.: Real spectra in non-Hermitian Hamiltonians having pt symmetry. Phys. Rev. Lett. 80, 5243–5246 (1998)ADSMATHMathSciNetGoogle Scholar
  7. 7.
    Siegl, P., Krejčiřík, D.: On the metric operator for the imaginary cubic oscillator. Phys. Rev. D 86, 121702(R) (2012)ADSGoogle Scholar
  8. 8.
    Scholtz, F.G., Geyer, H.B., Hahne, F.J.H.: Quasi-Hermitian operators in quantum mechanics and the variational principle. Ann. Phys. (NY) 213, 74–101 (1992)ADSMATHMathSciNetGoogle Scholar
  9. 9.
    Kato, T.: Perturbation theory for linear operators. Spinger, Berlin (1966)MATHGoogle Scholar
  10. 10.
    Znojil, M.: Quantum catastrophes: a case study. J. Phys. A: Math. Theor. 45, 444036 (2012)ADSMathSciNetGoogle Scholar
  11. 11.
    Znojil, M.: N-site-lattice analogues of V(x) = ix 3. Ann. Phys. (NY) 327, 893–913 (2012)ADSMATHMathSciNetGoogle Scholar
  12. 12.
    Jones, H.F.: Interface between Hermitian and non-Hermitian Hamiltonians in a model calculation. Phys. Rev. D 78, 065032 (2008)ADSGoogle Scholar
  13. 13.
    Znojil, M.: Scattering theory with localized non-Hermiticities. Phys. Rev. D 78, 025026 (2008)ADSMathSciNetGoogle Scholar
  14. 14.
    Krejčiřík, D., Bíla, H., Znojil, M.: Closed formula for the metric in the Hilbert space of a 𝓟𝓣-symmetric model. J. Phys. A: Math. Gen. 39, 10143–10153 (2006)ADSMATHGoogle Scholar
  15. 15.
    Znojil, M.: Complete set of inner products for a discrete 𝓟𝓣-symmetric square-well Hamiltonian. J. Math. Phys. 50, 122105 (2009)ADSMathSciNetGoogle Scholar
  16. 16.
    Znojil, M., Wu, J.: A generalized family of discrete PT-symmetric square wells. Int. J. Theor. Phys. 52, 2152–2162 (2013)MathSciNetGoogle Scholar
  17. 17.
    Znojil, M.: Solvable model of quantum phase transitions and the symbolic-manipulation-based study of its multiply degenerate exceptional points and of their unfolding. Ann. Phys. (NY) 336, 98–111 (2013)ADSMATHMathSciNetGoogle Scholar
  18. 18.
    Znojil, M.: Maximal couplings in 𝓟𝓣-symmetric chain-models with the real spectrum of energies. J. Phys. A: Math. Theor. 40, 4863–4875 (2007)ADSMATHMathSciNetGoogle Scholar
  19. 19.
    Char, B.W. et al.: Maple V Language Reference Manual. Springer, New York (1993)Google Scholar
  20. 20.
    Znojil, M.: Symbolic-manipulation constructions of Hilbert-space metrics in quantum mechanics.Lecture Notes in Computer Science 6885, 348–357 (2011)Google Scholar
  21. 21.
    Znojil, M.: Quantum inner-product metrics via recurrent solution of Dieudonne equation. J. Phys. A: Math. Theor. 45, 085302 (2012)ADSMathSciNetGoogle Scholar
  22. 22.
    Znojil, M.: On the role of the normalization factors κ n and of the pseudo-metric P in crypto-Hermitian quantum models. Symmetry, Integrability and Geometry: Methods and Applications. SIGMA 4, 001 (2008)Google Scholar
  23. 23.
  24. 24.
    Heiss, W.D.: The physics of exceptional points. J. Phys. A: Math. Theor. 45, 444016 (2012)ADSMathSciNetGoogle Scholar
  25. 25.
    Znojil, M.: Quantum Big Bang without fine-tuning in a toy-model. J. Phys. Conf. Ser. 343, 012136 (2012)ADSGoogle Scholar
  26. 26.
    Thom, R.: Structural stability and morphogenesis. An outline of a general theory of models. Benjamin, Reading (1975)Google Scholar
  27. 27.
    Arnold, V.I.: Catastrophe Theory. Springer-Verlag, Berlin (1992)Google Scholar
  28. 28.
    Langer, H., Tretter, C.: A Krein space approach to PT symmetry. Czechosl. J. Phys. 70, 1113–1120 (2004)ADSMathSciNetGoogle Scholar
  29. 29.
    Krejčiřík, D., Siegl, P., železný, J.: On the similarity of Sturm-Liouville operators with non-Hermitian boundary conditions to self-adjoint and normal operators. Compl. Anal. Oper. Theory 8, 255–281 (2014). arXiv:1108.4946
  30. 30.
    Hernandez-Coronado, H., Krejčiřík, D., Siegl, P.: Perfect transmission scattering as a 𝓟𝓣-symmetric spectral problem. Phys. Lett. A 375, 2149–2152 (2011)ADSMATHMathSciNetGoogle Scholar
  31. 31.
    Ambichl, P., Makris, K.G., Ge, L., Chong, Y.-D., Stone, A.D., Rotter, S.: Breaking of PT symmetry in bounded and unbounded scattering systems. Phys. Rev. X 3(041030), 9 (2013)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Géza Lévai
    • 1
  • František Růžička
    • 2
  • Miloslav Znojil
    • 2
  1. 1.ATOMKIDebrecenHungary
  2. 2.Nuclear Physics Institute ASCRŘežCzech Republic

Personalised recommendations