International Journal of Theoretical Physics

, Volume 53, Issue 8, pp 2636–2661 | Cite as

The Cosmological Constant Constrained with Union2.1 Supernovae Type Ia Data

Derivation and Evaluation of Several FRW and Carmeli Models Presenting Underwhelming Support for the Standard Model
  • Ahmet M. Öztas
  • Michael L. SmithEmail author


We derive several, detailed relationships in terms of the Friedmann-Robertson-Walker (FRW) generalization which describe the Universe during both the radiation and matter dominated epochs. We explicitly provide for the influence of radiation, rather than burying this term within the matter term. Several models allow the cosmological constant (CC) to vary with universe expansion in differing manners. We evaluate these and other popular models including the ΛCDM(standard model), quintessence as presented by Vishwakarma, Equation of State (EoS) and the Carmeli model with data from the 580 Union2.1 supernovae type Ia collection, using several minimization routines and find models built about the CC, the ΛCDM models, fare no better than those without.


Cosmology Supernova Radiation Analytical methods Dark energy Dark matter Cosmological constant 


  1. 1.
    Sumner, T.J.: Experimental searches for dark matter. Living Rev. Relativ. 5, 4 [Online Article]: cited [2014]. (2002)
  2. 2.
    Carroll, S.M.: The cosmological constant. Living Rev. Relativ., 3, 1 [Online Article]: cited [2014]. (2001)
  3. 3.
    Will, C.M.: The confrontation between general relativity and experiment. Living Rev. Relativ. 9, 3 [Online Article]: cited [2014]. (2006)
  4. 4.
    Shen, M.: Dark energy models in plane symmetric space-time with time varying Λ term. Int. J. Theor. Phys. 52, 178 (2013)CrossRefzbMATHGoogle Scholar
  5. 5.
    Sola, J.: Cosmological constant and vacuum energy: old and new ideas. arXiv:1306.1527v3 (2013)
  6. 6.
    Riess, A.G., Strolger, L.-G., Casertano, S., Ferguson, H.C., Mobasher, B., et al.: Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009 (1998)ADSCrossRefGoogle Scholar
  7. 7.
    Perlmutter, S., Aldering, G., Goldhaber, G., Knop, R.A., Nugent, P., et al.: Measurements of omega and lambda from 42 high-redshift supernovae. Astrophys. J. 517, 565 (1999)ADSCrossRefGoogle Scholar
  8. 8.
    Suzuki, N., Rubin, D., Lidman, C., Aldering, G., Amanullah, R., et al.: The hubble space telescope cluster supernova survey. V. Improving the dark-energy constraints above z > 1 and building an early-type-hosted supernova sample. Astrophys. J. 746, 85 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    Astier, P.: The expansion of the universe observed with supernovae. Rep. Prog. Phys., 75, 116901 (2012)Google Scholar
  10. 10.
    Calder, A.D., Krueger, B.K., Jackson, A.P., Townsley, D.M.: The influence of chemical composition on models of type Ia supernovae. arXiv:1303.2207v1 (2013)
  11. 11.
    Wang, X., Wang, L., Filippenko, A.V., Baron, E., Kromer, M.: Evidence for type Ia supernova diversity from ultraviolet observations with the hubble space telescope. Astrophys. J. 749, 126 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    Kirshner, R.P.: Foundations of supernovae cosmology. arXiv:0910.0257v1 (2009)
  13. 13.
    Wang, S., Wang, Y.: Exploring the systematic uncertainties of type Ia supernovae as cosmological probes. arXiv:1306.6423v2 (2013)
  14. 14.
    Chotard, N.N., Gangler, E., Aldering, G., Antilogus, P., Aragon, C., et al.: The reddening law of type Ia supernovae: separating intrinsic variability from dust using equivalent widths. Astron. Astrophys. 529, L4 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    Vishwakarma, R.G.: Consequences on variable Λ-models from distant type Ia supernovae and compact radio sources. Classical and Quantum Gravity 18, 1159 (2001)ADSCrossRefzbMATHGoogle Scholar
  16. 16.
    Peebles, P.J.E., Ratra, B.: The cosmological constant and dark energy. Rev. Mod. Phys. 75, 559 (2003)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Pavluchenko, S.A.: The generality of inflation in closed cosmological models with some quintessence potentials. arXiv:astro-ph0304354v1 (2003)
  18. 18.
    Oztas, A.M., Smith, M.L.: A polytropic solution of the expanding universe - constraining relativistic and non-relativistic matter densities using astronomical results. In: Alfonso-Faus, A. (ed.) Aspects of Today’s Cosmology. 51000 Rijeka, Croatia (2011)Google Scholar
  19. 19.
    Smith, M.L., Oztas, A.M., Paul, J.: A model of light from ancient blue emissions. Int. J. Theor. Phys. 45, 937 (2006)CrossRefzbMATHGoogle Scholar
  20. 20.
    Kelly, P.L., Hicken, M., Burke, D.L., Mandel, K.S., Kirshner, R.P.: Hubble residuals of nearby type Ia supernovae are correlated with host galaxy masses. Astrophys. J. 715, 743 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    Benitez-Herrera, S., Röpke, F., Hillebrandt, W., Mignone, C., Bartlemann, M.: Model-independent reconstruction of the expansion history of the universe from type Ia supernovae. Mon. Not. R. Astron. Soc. 419, 513 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    Hartnett, J.G.: Extending the redshift-distance relation in cosmological general relativity to higher redshifts. Found. Phys. 45, 201 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    Burles, S., Nollett, K.M., Turner, M.S.: Big bang nucleosynthesis predictions for precision cosmology. Astrophys. J. Lett. 552, L1–L5 (2001)ADSCrossRefGoogle Scholar
  24. 24.
    Burles, S., Nollett, K.M., Turner, M.S.: What is the big-bang-nucleosynthesis prediction for the baryon density and how reliable is it? Phys. Rev. Part D Fields 63, 063512 (2001)ADSCrossRefGoogle Scholar
  25. 25.
    Einstein, A.: The Principle of Relativity. Dover, New York, p. 11501 (1952)Google Scholar
  26. 26.
    Carroll, S.M., Press, W.H., Turner, E.L.: The cosmological constant. Ann. Rev. Astron. Astrophys 30, 499 (1992)ADSCrossRefGoogle Scholar
  27. 27.
    Galli, S., Bean, R., Melchiorri, A., Silk, J.: Delayed recombination and cosmic parameters. Phys. Rev. D 78, 063532 (2008)ADSCrossRefGoogle Scholar
  28. 28.
  29. 29.
    Oztas, A.M., Smith, M.L., Paul, J.: Spacetime curvature is important for cosmology constrained with supernova emissions. Int. J. Theor. Phys 47, 2464 (2008)CrossRefGoogle Scholar
  30. 30.
    Oztas, A.M., Smith, M.L., Paul, J.: A Model of light from ancient blue emissions. Int. J. Theor. Phys 45, 937 (2006)CrossRefGoogle Scholar
  31. 31.
    Astier, P., Guy, J., Regnault, N., Pain, R., Aubourg, E., Balam, D., et al.: The supernova legacy survey: Measurement of Ωm, ΩΛ and w from the first year data Set. Astron. Astrophys. 447, 31 (2006)Google Scholar
  32. 32.
    Behar, S., Carmeli, M.: Cosmological relativity: a new theory of cosmology. Int. J. Theor. Phys. 39, 1375 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    Hartnett, J.G.: A valid finite bounded expanding carmelian universe without dark matter. Int. J. Theor. Phys. 52, 4360 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  34. 34.
    Oliveira, F.J., Hartnett, J.G.: Carmeli’s cosmology fits data for an accelerating and decelerating universe without dark matter or dark energy. Found. Phys. Lett 19, 519 (2006)zbMATHGoogle Scholar
  35. 35.
    Tonry, J.L., Schmidt, B.P., Barris, B., Candia, P., Challis, P., et al.: Cosmological results from high-Z supernovae. Astrophys. J. 594, 1 (2003)ADSCrossRefGoogle Scholar
  36. 36.
    Kroupa, P., Pawlowski, M., Milgrom, M.: The failures of the standard model of cosmology require a new paradigm. Int. J. Mod. Phys. D. 21, 1230003 (2013)ADSCrossRefGoogle Scholar
  37. 37.
    Copi, C.J., Schramm, D.N., Turner, M.S.: Big-bang nucleosynthesis and the baryon density of the universe. Science. 267(5195), 192 (1995)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Engineering PhysicsHacettepe UniversityAnkaraTurkey
  2. 2.4S Fuel Research, Inc.MesaUSA

Personalised recommendations