International Journal of Theoretical Physics

, Volume 53, Issue 10, pp 3648–3657 | Cite as

Unscrambling the Quantum Omelette

Article

Abstract

Based on recent theorems about quantum value-indefiniteness it is conjectured that many issues of “Born’s quantum mechanics” can be overcome by supposing that only a single pure state exists; and that the quantum evolution permutes this state.

Keywords

Quantum measurement theory Mixed state Quantum probability 

References

  1. 1.
    von Neumann, J.: Mathematische Grundlagen der Quantenmechanik. Springer, Berlin (1932). English translation in Ref. [45] MATHGoogle Scholar
  2. 2.
    Jaynes, E.T.: Probability in quantum theory. In: Zurek, W.H. (ed.) Complexity, Entropy, and the Physics of Information: Proceedings of the 1988 Workshop on Complexity, Entropy, and the Physics of Information, May–June, 1989, Santa Fe, New Mexico, pp. 381–404. Addison-Wesley, Reading (1990). http://bayes.wustl.edu/etj/articles/prob.in.qm.pdf Google Scholar
  3. 3.
    Boskovich, R.J.: De spacio et tempore, ut a nobis cognoscuntur. In: Child, J.M. (ed.) A Theory of Natural Philosophy, pp. 203–205. MIT Press, Cambridge (1966). First printed Open Court (1922) http://www.archive.org/details/theoryofnaturalp00boscrich Google Scholar
  4. 4.
    Toffoli, T.: The role of the observer in uniform systems. In: Klir, G.J. (ed.) Applied General Systems Research, Recent Developments and Trends, pp. 395–400. Plenum Press, New York (1978) CrossRefGoogle Scholar
  5. 5.
    Svozil, K.: Extrinsic-intrinsic concept and complementarity. In: Atmanspacher, H., Dalenoort, G.J. (eds.) Inside versus Outside. Springer Series in Synergetics, vol. 63, pp. 273–288. Springer, Berlin (1994). doi:10.1007/978-3-642-48647-0_15 CrossRefGoogle Scholar
  6. 6.
    Summhammer, J.: The physical quantities in the random data of neutron interferometry. In: Bitsakis, E.I., Nicolaides, C.A. (eds.) The Concept of Probability, Fundamental Theories of Physics, vol. 24, pp. 207–219. Springer, Amsterdam (1989). doi:10.1007/978-94-009-1175-8 Google Scholar
  7. 7.
    Wheeler, J.A.: Information, physics, quantum: the search for links. In: Zurek, W.H. (ed.) Complexity, Entropy, and the Physics of Information: Proceedings of the 1988 Workshop on Complexity, Entropy, and the Physics of Information, May–June, 1989 Santa Fe, New Mexico. Addison-Wesley, Reading (1990) http://jawarchive.files.wordpress.com/2012/03/informationquantumphysics.pdf Google Scholar
  8. 8.
    Stace, W.T.: The refutation of realism. In: Feigl, H., Sellars, W. (eds.) Readings in Philosophical Analysis, pp. 364–372. Appleton-Century-Crofts, New York (1949). Previously published in Mind 53, 349–353 (1934) Google Scholar
  9. 9.
    Jaynes, E.T.: Clearing up mysteries—the original goal. In: Skilling, J. (ed.) Maximum-Entropy and Bayesian Methods:: Proceedings of the 8th Maximum Entropy Workshop, St. John’s College, Cambridge, England, August 1–5, 1988, pp. 1–28. Kluwer, Dordrecht (1989) http://bayes.wustl.edu/etj/articles/cmystery.pdf CrossRefGoogle Scholar
  10. 10.
    Born, M.: Zur Quantenmechanik der Stoßvorgänge. Z. Phys. 37, 863–867 (1926). doi:10.1007/BF01397477 CrossRefMATHADSGoogle Scholar
  11. 11.
    Zeilinger, A.: The message of the quantum. Nature 438, 743 (2005). doi:10.1038/438743a CrossRefADSGoogle Scholar
  12. 12.
    Myrvold, W.C.: Statistical mechanics and thermodynamics: a maxwellian view. Stud. Hist. Philos. Mod. Phys. 42, 237–243 (2011). doi:10.1016/j.shpsb.2011.07.001 CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Bell, J.S.: Against ‘measurement’. Phys. World 3, 33–41 (1990) http://physicsworldarchive.iop.org/summary/pwa-xml/3/8/phwv3i8a26 Google Scholar
  14. 14.
    Gold, M.E.: Language identification in the limit. Inf. Control 10, 447–474 (1967). doi:10.1016/S0019-9958(67)91165-5 CrossRefMATHGoogle Scholar
  15. 15.
    Blum, L., Blum, M.: Toward a mathematical theory of inductive inference. Inf. Control 28, 125–155 (1975). doi:10.1016/S0019-9958(75)90261-2 CrossRefMATHGoogle Scholar
  16. 16.
    Angluin, D., Smith, C.H.: Inductive inference: Theory and methods. ACM Comput. Surv. 15, 237–269 (1983). doi:10.1145/356914.356918 CrossRefMathSciNetGoogle Scholar
  17. 17.
    Adleman, L.M., Blum, M.: Inductive inference and unsolvability. J. Symb. Log. 56, 891–900 (1991). doi:10.2307/2275058 CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Li, M., Vitányi, P.M.B.: Inductive reasoning and Kolmogorov complexity. J. Comput. Syst. Sci. 44, 343–384 (1992). doi:10.1016/0022-0000(92)90026-F CrossRefMATHGoogle Scholar
  19. 19.
    Chaitin, G.J.: Computing the busy beaver function. In: Cover, T.M., Gopinath, B. (eds.) Open Problems in Communication and Computation, p. 108. Springer, New York (1987) CrossRefGoogle Scholar
  20. 20.
    Clifton, R.K.: Private communication (1995) Google Scholar
  21. 21.
    Cabello, A.: Experimentally testable state-independent quantum contextuality. Phys. Rev. Lett. 101, 210401 (2008). doi:10.1103/PhysRevLett.101.210401 CrossRefMathSciNetADSGoogle Scholar
  22. 22.
    Svozil, K.: How much contextuality? Nat. Comput. 11, 261–265 (2012). doi:10.1007/s11047-012-9318-9 arXiv:1103.3980 CrossRefMathSciNetGoogle Scholar
  23. 23.
    Svozil, K.: Time generated by intrinsic observers. In: Trappl, R. (ed.) Cybernetics and Systems ’96. Proceedings of the 13th European Meeting on Cybernetics and Systems Research, pp. 162–166. Austrian Society for Cybernetic Studies, Vienna (1996) http://tph.tuwien.ac.at/~svozil/publ/time1.htm Google Scholar
  24. 24.
    Knuth, K.H., Bahreyni, N.: The physics of events: a potential foundation for emergent space-time (2012). arXiv:1209.0881 [math-ph]
  25. 25.
    Reck, M., Zeilinger, A., Bernstein, H.J., Bertani, P.: Experimental realization of any discrete unitary operator. Phys. Rev. Lett. 73, 58–61 (1994). doi:10.1103/PhysRevLett.73.58 CrossRefADSGoogle Scholar
  26. 26.
    Peres, A.: Unperformed experiments have no results. Am. J. Phys. 46, 745–747 (1978). doi:10.1119/1.11393 CrossRefADSGoogle Scholar
  27. 27.
    Abbott, A.A., Calude, C.S., Conder, J., Svozil, K.: Strong Kochen-Specker theorem and incomputability of quantum randomness. Phys. Rev. A 86, 062109 (2012). doi:10.1103/PhysRevA.86.062109, arXiv:1207.2029 CrossRefADSGoogle Scholar
  28. 28.
    Abbott, A.A., Calude, C.S., Svozil, K.: Value indefiniteness is almost everywhere (2013). arXiv:1309.7188
  29. 29.
    Pitowsky, I.: Infinite and finite Gleason’s theorems and the logic of indeterminacy. J. Math. Phys. 39, 218–228 (1998). doi:10.1063/1.532334 CrossRefMATHMathSciNetADSGoogle Scholar
  30. 30.
    Hrushovski, E., Pitowsky, I.: Generalizations of Kochen and Specker’s theorem and the effectiveness of Gleason’s theorem. Stud. Hist. Philos. Mod. Phys. 35, 177–194 (2004). arXiv:quant-ph/0307139. doi:10.1016/j.shpsb.2003.10.002 CrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    Greechie, J.R.: Orthomodular lattices admitting no states. J. Comb. Theory 10, 119–132 (1971). doi:10.1016/0097-3165(71)90015-X CrossRefMATHMathSciNetGoogle Scholar
  32. 32.
    Bell, J.S.: On the problem of hidden variables in quantum mechanics. Rev. Mod. Phys. 38, 447–452 (1966). doi:10.1103/RevModPhys.38.447 CrossRefMATHADSGoogle Scholar
  33. 33.
    Everitt, M.J., Munro, W.J., Spiller, T.P.: Quantum measurement with chaotic apparatus. Phys. Lett. A 374, 2809–2815 (2010). arXiv:0905.1867. doi:10.1016/j.physleta.2010.05.006 CrossRefMATHADSGoogle Scholar
  34. 34.
    Zeilinger, A.: A foundational principle for quantum mechanics. Found. Phys. 29, 631–643 (1999). doi:10.1023/A:1018820410908 CrossRefMathSciNetGoogle Scholar
  35. 35.
    Toner, B.F., Bacon, D.: Communication cost of simulating Bell correlations. Phys. Rev. Lett. 91, 187904 (2003). doi:10.1103/PhysRevLett.91.187904 CrossRefMathSciNetADSGoogle Scholar
  36. 36.
    Svozil, K.: Communication cost of breaking the Bell barrier. Phys. Rev. A 72, 050302 (2005). arXiv:physics/0510050. doi:10.1103/PhysRevA.72.050302 CrossRefMathSciNetADSGoogle Scholar
  37. 37.
    Svozil, K., Tkadlec, J.: Greechie diagrams, nonexistence of measures in quantum logics and Kochen–Specker type constructions. J. Math. Phys. 37, 5380–5401 (1996). doi:10.1063/1.531710 CrossRefMATHMathSciNetADSGoogle Scholar
  38. 38.
    Specker, E.: Private communication to K. Svozil (1999) Google Scholar
  39. 39.
    Kochen, S., Specker, E.P.: The problem of hidden variables in quantum mechanics. Math. J. 17, 59–87 (1967). doi:10.1512/iumj.1968.17.17004 MATHMathSciNetGoogle Scholar
  40. 40.
    Everett, H. III: ‘Relative State’ formulation of quantum mechanics. Rev. Mod. Phys. 29, 454–462 (1957). doi:10.1103/RevModPhys.29.454 CrossRefMathSciNetADSGoogle Scholar
  41. 41.
    Wigner, E.P.: Remarks on the mind-body question. In: Good, I.J. (ed.) The Scientist Speculates, pp. 284–302. Heinemann and Basic Books, London (1961). http://www.phys.uu.nl/igg/jos/foundQM/wigner.pdf Google Scholar
  42. 42.
    Schrödinger, E.: The Interpretation of Quantum Mechanics, Dublin Seminars (1949–1955) and Other Unpublished Essays. Ox Bow, Woodbridge (1995) Google Scholar
  43. 43.
    Beltrametti, E., Chiara, M.L.D., Giuntini, R., Leporini, R., Sergioli, G.: Epistemic quantum computational structures in a Hilbert-space environment. Fundam. Inform. 115, 1–14 (2012). doi:10.3233/FI-2012-637 MATHMathSciNetGoogle Scholar
  44. 44.
    Leff, H.S., Rex, A.F.: Maxwell’s Demon 2. Entropy, Classical and Quantum Information, Computing. Institute of Physics Publishing, Bristol and Philadelphia (1990) CrossRefGoogle Scholar
  45. 45.
    von Neumann, J.: Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton (1955) MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Institute for Theoretical PhysicsVienna University of TechnologyViennaAustria

Personalised recommendations