International Journal of Theoretical Physics

, Volume 53, Issue 10, pp 3648–3657 | Cite as

Unscrambling the Quantum Omelette

  • Karl SvozilEmail author


Based on recent theorems about quantum value-indefiniteness it is conjectured that many issues of “Born’s quantum mechanics” can be overcome by supposing that only a single pure state exists; and that the quantum evolution permutes this state.


Quantum measurement theory Mixed state Quantum probability 



This research has been partly supported by FP7-PEOPLE-2010-IRSES-269151-RANPHYS. This contribution was done in part during a visiting honorary appointment at the University of Auckland, New Zealand, as well as at the University of Cagliary, Sardinia, Italy. Discussions during a LARSIM/QuPa workshop on physics and computation at the Institut Henri Poincaré, Paris, on June 28-29, 2012, the Biennial IQSA Conference Quantum Structures 2012 in Cagliari, Sardinia, on July 23-27, 2012, as well as the conference New Directions in the Foundations of Physics 2013, in Washington, D.C., on May 10-12, 2013, where previous versions of this paper have been presented, are gratefully acknowledged. I also gratefully acknowledge stimulating discussions with and comments by many peers; in particular, Alastair Abbott, Jeffrey Bub, Cristian S. Calude, William Demopoulos, Christopher Fuchs, and Constantine Tsinakis.


  1. 1.
    von Neumann, J.: Mathematische Grundlagen der Quantenmechanik. Springer, Berlin (1932). English translation in Ref. [45] zbMATHGoogle Scholar
  2. 2.
    Jaynes, E.T.: Probability in quantum theory. In: Zurek, W.H. (ed.) Complexity, Entropy, and the Physics of Information: Proceedings of the 1988 Workshop on Complexity, Entropy, and the Physics of Information, May–June, 1989, Santa Fe, New Mexico, pp. 381–404. Addison-Wesley, Reading (1990). Google Scholar
  3. 3.
    Boskovich, R.J.: De spacio et tempore, ut a nobis cognoscuntur. In: Child, J.M. (ed.) A Theory of Natural Philosophy, pp. 203–205. MIT Press, Cambridge (1966). First printed Open Court (1922) Google Scholar
  4. 4.
    Toffoli, T.: The role of the observer in uniform systems. In: Klir, G.J. (ed.) Applied General Systems Research, Recent Developments and Trends, pp. 395–400. Plenum Press, New York (1978) CrossRefGoogle Scholar
  5. 5.
    Svozil, K.: Extrinsic-intrinsic concept and complementarity. In: Atmanspacher, H., Dalenoort, G.J. (eds.) Inside versus Outside. Springer Series in Synergetics, vol. 63, pp. 273–288. Springer, Berlin (1994). doi: 10.1007/978-3-642-48647-0_15 CrossRefGoogle Scholar
  6. 6.
    Summhammer, J.: The physical quantities in the random data of neutron interferometry. In: Bitsakis, E.I., Nicolaides, C.A. (eds.) The Concept of Probability, Fundamental Theories of Physics, vol. 24, pp. 207–219. Springer, Amsterdam (1989). doi: 10.1007/978-94-009-1175-8 Google Scholar
  7. 7.
    Wheeler, J.A.: Information, physics, quantum: the search for links. In: Zurek, W.H. (ed.) Complexity, Entropy, and the Physics of Information: Proceedings of the 1988 Workshop on Complexity, Entropy, and the Physics of Information, May–June, 1989 Santa Fe, New Mexico. Addison-Wesley, Reading (1990) Google Scholar
  8. 8.
    Stace, W.T.: The refutation of realism. In: Feigl, H., Sellars, W. (eds.) Readings in Philosophical Analysis, pp. 364–372. Appleton-Century-Crofts, New York (1949). Previously published in Mind 53, 349–353 (1934) Google Scholar
  9. 9.
    Jaynes, E.T.: Clearing up mysteries—the original goal. In: Skilling, J. (ed.) Maximum-Entropy and Bayesian Methods:: Proceedings of the 8th Maximum Entropy Workshop, St. John’s College, Cambridge, England, August 1–5, 1988, pp. 1–28. Kluwer, Dordrecht (1989) CrossRefGoogle Scholar
  10. 10.
    Born, M.: Zur Quantenmechanik der Stoßvorgänge. Z. Phys. 37, 863–867 (1926). doi: 10.1007/BF01397477 CrossRefzbMATHADSGoogle Scholar
  11. 11.
    Zeilinger, A.: The message of the quantum. Nature 438, 743 (2005). doi: 10.1038/438743a CrossRefADSGoogle Scholar
  12. 12.
    Myrvold, W.C.: Statistical mechanics and thermodynamics: a maxwellian view. Stud. Hist. Philos. Mod. Phys. 42, 237–243 (2011). doi: 10.1016/j.shpsb.2011.07.001 CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Bell, J.S.: Against ‘measurement’. Phys. World 3, 33–41 (1990) Google Scholar
  14. 14.
    Gold, M.E.: Language identification in the limit. Inf. Control 10, 447–474 (1967). doi: 10.1016/S0019-9958(67)91165-5 CrossRefzbMATHGoogle Scholar
  15. 15.
    Blum, L., Blum, M.: Toward a mathematical theory of inductive inference. Inf. Control 28, 125–155 (1975). doi: 10.1016/S0019-9958(75)90261-2 CrossRefzbMATHGoogle Scholar
  16. 16.
    Angluin, D., Smith, C.H.: Inductive inference: Theory and methods. ACM Comput. Surv. 15, 237–269 (1983). doi: 10.1145/356914.356918 CrossRefMathSciNetGoogle Scholar
  17. 17.
    Adleman, L.M., Blum, M.: Inductive inference and unsolvability. J. Symb. Log. 56, 891–900 (1991). doi: 10.2307/2275058 CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Li, M., Vitányi, P.M.B.: Inductive reasoning and Kolmogorov complexity. J. Comput. Syst. Sci. 44, 343–384 (1992). doi: 10.1016/0022-0000(92)90026-F CrossRefzbMATHGoogle Scholar
  19. 19.
    Chaitin, G.J.: Computing the busy beaver function. In: Cover, T.M., Gopinath, B. (eds.) Open Problems in Communication and Computation, p. 108. Springer, New York (1987) CrossRefGoogle Scholar
  20. 20.
    Clifton, R.K.: Private communication (1995) Google Scholar
  21. 21.
    Cabello, A.: Experimentally testable state-independent quantum contextuality. Phys. Rev. Lett. 101, 210401 (2008). doi: 10.1103/PhysRevLett.101.210401 CrossRefMathSciNetADSGoogle Scholar
  22. 22.
    Svozil, K.: How much contextuality? Nat. Comput. 11, 261–265 (2012). doi: 10.1007/s11047-012-9318-9 arXiv:1103.3980 CrossRefMathSciNetGoogle Scholar
  23. 23.
    Svozil, K.: Time generated by intrinsic observers. In: Trappl, R. (ed.) Cybernetics and Systems ’96. Proceedings of the 13th European Meeting on Cybernetics and Systems Research, pp. 162–166. Austrian Society for Cybernetic Studies, Vienna (1996) Google Scholar
  24. 24.
    Knuth, K.H., Bahreyni, N.: The physics of events: a potential foundation for emergent space-time (2012). arXiv:1209.0881 [math-ph]
  25. 25.
    Reck, M., Zeilinger, A., Bernstein, H.J., Bertani, P.: Experimental realization of any discrete unitary operator. Phys. Rev. Lett. 73, 58–61 (1994). doi: 10.1103/PhysRevLett.73.58 CrossRefADSGoogle Scholar
  26. 26.
    Peres, A.: Unperformed experiments have no results. Am. J. Phys. 46, 745–747 (1978). doi: 10.1119/1.11393 CrossRefADSGoogle Scholar
  27. 27.
    Abbott, A.A., Calude, C.S., Conder, J., Svozil, K.: Strong Kochen-Specker theorem and incomputability of quantum randomness. Phys. Rev. A 86, 062109 (2012). doi: 10.1103/PhysRevA.86.062109, arXiv:1207.2029 CrossRefADSGoogle Scholar
  28. 28.
    Abbott, A.A., Calude, C.S., Svozil, K.: Value indefiniteness is almost everywhere (2013). arXiv:1309.7188
  29. 29.
    Pitowsky, I.: Infinite and finite Gleason’s theorems and the logic of indeterminacy. J. Math. Phys. 39, 218–228 (1998). doi: 10.1063/1.532334 CrossRefzbMATHMathSciNetADSGoogle Scholar
  30. 30.
    Hrushovski, E., Pitowsky, I.: Generalizations of Kochen and Specker’s theorem and the effectiveness of Gleason’s theorem. Stud. Hist. Philos. Mod. Phys. 35, 177–194 (2004). arXiv:quant-ph/0307139. doi: 10.1016/j.shpsb.2003.10.002 CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Greechie, J.R.: Orthomodular lattices admitting no states. J. Comb. Theory 10, 119–132 (1971). doi: 10.1016/0097-3165(71)90015-X CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    Bell, J.S.: On the problem of hidden variables in quantum mechanics. Rev. Mod. Phys. 38, 447–452 (1966). doi: 10.1103/RevModPhys.38.447 CrossRefzbMATHADSGoogle Scholar
  33. 33.
    Everitt, M.J., Munro, W.J., Spiller, T.P.: Quantum measurement with chaotic apparatus. Phys. Lett. A 374, 2809–2815 (2010). arXiv:0905.1867. doi: 10.1016/j.physleta.2010.05.006 CrossRefzbMATHADSGoogle Scholar
  34. 34.
    Zeilinger, A.: A foundational principle for quantum mechanics. Found. Phys. 29, 631–643 (1999). doi: 10.1023/A:1018820410908 CrossRefMathSciNetGoogle Scholar
  35. 35.
    Toner, B.F., Bacon, D.: Communication cost of simulating Bell correlations. Phys. Rev. Lett. 91, 187904 (2003). doi: 10.1103/PhysRevLett.91.187904 CrossRefMathSciNetADSGoogle Scholar
  36. 36.
    Svozil, K.: Communication cost of breaking the Bell barrier. Phys. Rev. A 72, 050302 (2005). arXiv:physics/0510050. doi: 10.1103/PhysRevA.72.050302 CrossRefMathSciNetADSGoogle Scholar
  37. 37.
    Svozil, K., Tkadlec, J.: Greechie diagrams, nonexistence of measures in quantum logics and Kochen–Specker type constructions. J. Math. Phys. 37, 5380–5401 (1996). doi: 10.1063/1.531710 CrossRefzbMATHMathSciNetADSGoogle Scholar
  38. 38.
    Specker, E.: Private communication to K. Svozil (1999) Google Scholar
  39. 39.
    Kochen, S., Specker, E.P.: The problem of hidden variables in quantum mechanics. Math. J. 17, 59–87 (1967). doi: 10.1512/iumj.1968.17.17004 zbMATHMathSciNetGoogle Scholar
  40. 40.
    Everett, H. III: ‘Relative State’ formulation of quantum mechanics. Rev. Mod. Phys. 29, 454–462 (1957). doi: 10.1103/RevModPhys.29.454 CrossRefMathSciNetADSGoogle Scholar
  41. 41.
    Wigner, E.P.: Remarks on the mind-body question. In: Good, I.J. (ed.) The Scientist Speculates, pp. 284–302. Heinemann and Basic Books, London (1961). Google Scholar
  42. 42.
    Schrödinger, E.: The Interpretation of Quantum Mechanics, Dublin Seminars (1949–1955) and Other Unpublished Essays. Ox Bow, Woodbridge (1995) Google Scholar
  43. 43.
    Beltrametti, E., Chiara, M.L.D., Giuntini, R., Leporini, R., Sergioli, G.: Epistemic quantum computational structures in a Hilbert-space environment. Fundam. Inform. 115, 1–14 (2012). doi: 10.3233/FI-2012-637 zbMATHMathSciNetGoogle Scholar
  44. 44.
    Leff, H.S., Rex, A.F.: Maxwell’s Demon 2. Entropy, Classical and Quantum Information, Computing. Institute of Physics Publishing, Bristol and Philadelphia (1990) CrossRefGoogle Scholar
  45. 45.
    von Neumann, J.: Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton (1955) zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Institute for Theoretical PhysicsVienna University of TechnologyViennaAustria

Personalised recommendations