International Journal of Theoretical Physics

, Volume 53, Issue 2, pp 612–621 | Cite as

The Stabilizer Dimension of n-Qubit Symmetric States



We consider local unitary transformations acting on a multiparty symmetric pure state and determine the stabilizer dimension of any pure symmetric state.


Pure symmetric state Stabilizer dimension Local unitary transformation 



The authors thank Professor Shaoming Fei for his advice. Bo Li is supported by Natural Science Foundation of China (Grants No. 11305105), the Natural Science Foundation of Jiangxi Province (Grants No. 20132BAB212010). Jiao-jiao Li is supported by Youth Foundation of Henan Normal University (12QK02) and Zhixi Wang is supported by KZ201210028032.


  1. 1.
    Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009) ADSCrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Linden, N., Popescu, S.: On multi-particle entanglement. Fortschr. Phys. 46, 567 (1998) CrossRefMathSciNetGoogle Scholar
  3. 3.
    Linden, N., Popescu, S., Sudbery, A.: Non-local properties of multi-particle density matrices. Phys. Rev. Lett. 83, 243 (1999) ADSCrossRefGoogle Scholar
  4. 4.
    Carteret, H.A., Sudbery, A.: Local symmetry properties of pure 3-qubit states. J. Phys. A 33, 4981 (2000) ADSCrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Sudbery, A.: On local invariants of pure three-qubit states. J. Phys. A 34, 643 (2001) ADSCrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Makhlin, Yu.: Nonlocal properties of two-qubit gates and mixed states and optimization of quantum computations. Quantum Inf. Process. 1, 243 (2002) CrossRefMathSciNetGoogle Scholar
  7. 7.
    Lyons, D.W., Walck, S.N.: Minimum orbit dimension for local unitary action on n-qubit pure states. J. Math. Phys. 46, 102106 (2005) ADSCrossRefMathSciNetGoogle Scholar
  8. 8.
    Lyons, D.W., Walck, S.N.: Classification of n-qubit states with minimum orbit dimension. J. Phys. A 39, 2443 (2006) ADSCrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Lyons, D.W., Walck, S.N.: Maximum stabilizer dimension for nonproduct states. Phys. Rev. A 76, 022303 (2007) ADSCrossRefMathSciNetGoogle Scholar
  10. 10.
    Lyons, D.W., Walck, S.N., Blanda, S.A.: Classification of nonproduct states with maximum stabilizer dimension. Phys. Rev. A 77, 022309 (2008) ADSCrossRefGoogle Scholar
  11. 11.
    Lyons, D.W., Walck, S.N.: Multiparty quantum states stabilized by the diagonal subgroup of the local unitary group. Phys. Rev. A 78, 042314 (2008) ADSCrossRefGoogle Scholar
  12. 12.
    Zhang, D.H., Fan, H., Zhou, D.L.: Stabilizer dimension of graph states. Phys. Rev. A 79, 042318 (2009) ADSCrossRefGoogle Scholar
  13. 13.
    Stockton, J.K., Geremia, J.M., Doherty, A.C., Mabuchi, H.: Characterizing the entanglement of symmetric many-particle spin-1 2 systems. Phys. Rev. A 67, 022112 (2003) ADSCrossRefGoogle Scholar
  14. 14.
    Bastin, T., Krins, S., Mathonet, P., Godefroid, M., Solano, E.: Operational families of entanglement classes for symmetric n-qubit states. Phys. Rev. Lett. 103, 070503 (2009) ADSCrossRefGoogle Scholar
  15. 15.
    Mathonet, P., Krins, S., Godefroid, M., Solano, E., Bastin, T.: Entanglement equivalence of n-qubit symmetric states. Phys. Rev. A 81, 052315 (2010) ADSCrossRefMathSciNetGoogle Scholar
  16. 16.
    Lyons, D.W., Walck, S.N.: Entanglement classes of symmetric Werner states. Phys. Rev. A 84, 042316 (2011) ADSCrossRefGoogle Scholar
  17. 17.
    Lyons, D.W., Skelton, A.M., Walck, S.N.: Werner state structure and entanglement classification. Adv. Math. Phys. 1, 463610 (2012) MathSciNetGoogle Scholar
  18. 18.
    Lyons, D.W., Walck, S.N.: Symmetric mixed states of n qubits: local unitary stabilizers and entanglement classes. Phys. Rev. A 84, 042340 (2011) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Mathematics and ComputerShangrao Normal UniversityShangraoChina
  2. 2.College of Mathematics and Information ScienceHenan Normal UniversityXinxiangChina
  3. 3.School of Mathematical SciencesCapital Normal UniversityBeijingChina

Personalised recommendations