Advertisement

International Journal of Theoretical Physics

, Volume 53, Issue 10, pp 3465–3474 | Cite as

Insolubility from No-Signalling

  • Guido Bacciagaluppi
Article
  • 117 Downloads

Abstract

This paper improves on the result in my (Bacciagaluppi in Eur. J. Philos. Sci. 3: 87–100, 2013), showing that within the framework of the unitary Schrödinger equation it is impossible to reproduce the phenomenological description of quantum mechanical measurements (in particular the collapse of the state of the measured system) by assuming a suitable mixed initial state of the apparatus. The result follows directly from the no-signalling theorem applied to the entangled state of measured system and ancilla. As opposed to many other ‘insolubility theorems’ for the measurement problem of quantum mechanics, it focuses on the impossibility of reproducing the phenomenological collapse of the state of the measured system.

Keywords

Measurement problem Insolubility No-Signalling Von Neumann 

Notes

Acknowledgements

I wish to thank audiences at Aberdeen, Berlin, Cagliari and Oxford, as well as Arthur Fine and Max Schlosshauer, who heard or read and commented on previous versions of this and connected material. I am particularly indebted to Alex Blum, Martin Jähnert and especially Christoph Lehner for discussions of Einstein’s argument and of how it might relate (or not) to von Neumann’s. These discussions also helped me redirect my use of the no-signalling theorem to the general case of measurements with ancillas, whether or not there is spatial separation. Finally, I wish to thank Elise Crull, my collaborator on the Leverhulme Trust Project Grant ‘The Einstein Paradox’: The Debate on Nonlocality and Incompleteness in 1935 (project grant nr. F/00 152/AN), during the tenure of which this paper was written.

References

  1. 1.
    Bacciagaluppi, G.: Insolubility theorems and EPR argument. Eur. J. Philos. Sci. 3, 87–100 (2013). Also at http://philsci-archive.pitt.edu/9121/ CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Busch, P., Grabowski, M., Lahti, P.: Operational Quantum Physics. Lecture Notes in Physics, vol. m31. Springer, Berlin (1995). 2nd corrected printing (1997) zbMATHGoogle Scholar
  3. 3.
    von Neumann, J.: Mathematische Grundlagen der Quantenmechanik. Springer, Berlin (1932). 2nd edn. (1996), Transl. by R.T. Beyer as Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton (1955) zbMATHGoogle Scholar
  4. 4.
    Bassi, A., Ghirardi, G.C.: A general argument against the universal validity of the superposition principle. Phys. Lett. A 275, 373–381 (2000) ADSCrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Brown, H.R.: The insolubility proof of the quantum measurement problem. Found. Phys. 16, 857–870 (1986) ADSCrossRefMathSciNetGoogle Scholar
  6. 6.
    Ghirardi, G.C., Rimini, A., Weber, T.: A general argument against superluminal transmission through the quantum mechanical measurement process. Lett. Nuovo Cimento 27(10), 293–298 (1980) CrossRefMathSciNetGoogle Scholar
  7. 7.
    Fine, A.: Insolubility of the quantum measurement problem. Phys. Rev. D 2, 2783–2787 (1970) ADSCrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Albert, D.Z.: Quantum Mechanics and Experience. Harvard University Press, Cambridge (1992) Google Scholar
  9. 9.
    Kochen, S., Specker, E.P.: The problem of hidden variables in quantum mechanics. J. Math. Mech. 17, 59–88 (1967) zbMATHMathSciNetGoogle Scholar
  10. 10.
    Stairs, A.: Quantum logic, realism, and value-definiteness. Philos. Sci. 50, 578–602 (1983) CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Heywood, P., Redhead, M.L.G.: Nonlocality and the Kochen-Specker paradox. Found. Phys. 13, 481–499 (1983) ADSCrossRefMathSciNetGoogle Scholar
  12. 12.
    Bacciagaluppi, G.: Critique of Putnam’s quantum logic. Int. J. Theor. Phys. 32, 1835–1846 (1993) CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Conway, J., Kochen, S.: The free will theorem. Found. Phys. 36, 1441–1473 (2006) ADSCrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Bub, J.: Quantum correlations and the measurement problem (2012). arXiv:1210.6371. Accessed 9 January 2013
  15. 15.
    Bub, J., Bananaworld: Quantum mechanics for primates (2012). arXiv:1211.3062. Accessed 9 January 2013
  16. 16.
    Fine, A.: Einstein’s critique of quantum theory: the roots and significance of EPR. In: Barker, P., Shugart, C.G. (eds.) After Einstein: proceedings of the Einstein Centennial Celebration at Memphis State University, 14–16 March 1979, pp. 147–158. Memphis State University Press, Memphis (1981). Reprinted in: Fine, A. The shaky game: Einstein, realism and the quantum theory, pp. 26–39. University of Chicago Press, Chicago (1986) Google Scholar
  17. 17.
    Howard, D.: Einstein on locality and separability. Stud. Hist. Philos. Sci. 16, 171–201 (1985) CrossRefMathSciNetGoogle Scholar
  18. 18.
    Howard, D.: ‘Nicht sein kann was nicht sein darf’, or the prehistory of EPR, 1909–1935: Einstein’s early worries about the quantum mechanics of composite systems. In: Miller, A.I. (ed.) Sixty-Two Years of Uncertainty, pp. 61–111. Plenum Press, New York (1990) CrossRefGoogle Scholar
  19. 19.
    von Meyenn, K. (ed.): Eine Entdeckung von ganz außerordentlicher Tragweite: Schrödingers Briefwechsel zur Wellenmechanik und zum Katzenparadoxon. 2 vols. Springer, Berlin (2011) Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of PhilosophyUniversity of AberdeenAberdeenUK
  2. 2.Institut d’Histoire et de Philosophie des Sciences et des Techniques (CNRS, Paris 1, ENS)ParisFrance

Personalised recommendations