Advertisement

International Journal of Theoretical Physics

, Volume 52, Issue 10, pp 3771–3778 | Cite as

Quasinormal Modes of Hayward Regular Black Hole

  • Kai Lin
  • Jin LiEmail author
  • ShuZheng Yang
Article

Abstract

In this paper, using asymptotic iteration method and eikonal limit, the massive scalar quasinormal modes (QNM) is studied in regular Hayward spacetime, which is much similar to Schwarzschild black hole when r→∞ but there is no singularity at the center. We analyze the QNM frequencies ω by varying the parameter β (it is related to mass of black hole and cosmological constant), spherical harmonic index L and the mass of scalar field m. The results show that the effect of β could lead to the real part of ω increase but the imaginary part decrease, which imply that the existence of cosmological constant would impact on the process of a black hole relaxing after it has been perturbed.

Keywords

Quasinormal modes Hayward regular black hole Asymptotic iteration method Expansion method 

References

  1. 1.
    Bardeen, J.M.: In: Proceedings of GR5, Tbilisi, USSR, p. 174 (1968) Google Scholar
  2. 2.
    Hayward, S.A.: Phys. Rev. Lett. 96, 031103 (2006) ADSCrossRefGoogle Scholar
  3. 3.
    Ayon-Beato, E., Garcia, A.: Phys. Lett. B 493, 149 (2000) MathSciNetADSCrossRefzbMATHGoogle Scholar
  4. 4.
    Schutz, B.F., Will, C.M.: Astron. J. 291, L33 (1985) ADSCrossRefGoogle Scholar
  5. 5.
    Iyer, S., Will, C.M.: Phys. Rev. D 15, 3621 (1987) ADSGoogle Scholar
  6. 6.
    Konoplya, R.A.: Phys. Rev. D 68, 024018 (2003). arXiv:gr-qc/0303052 ADSGoogle Scholar
  7. 7.
    Zhidenko, A.: Class. Quantum Gravity 21, 273 (2004). arXiv:gr-qc/0307012v4 MathSciNetADSCrossRefzbMATHGoogle Scholar
  8. 8.
    Fernando, S.: Int. J. Mod. Phys. A 25, 669–684 (2010). arXiv:hep-th/0502239v5 MathSciNetADSCrossRefzbMATHGoogle Scholar
  9. 9.
    Lpez-Ortega, A.: Gen. Relativ. Gravit. 40, 1379–1401 (2008). arXiv:0706.2933v1 ADSCrossRefGoogle Scholar
  10. 10.
    Lin, K., Li, J., Yang, N.: Gen. Relativ. Gravit. 43, 1889–1899 (2011) MathSciNetADSCrossRefzbMATHGoogle Scholar
  11. 11.
    Gleiser, R.J., Dotti, G.: Phys. Rev. D 72, 124002 (2005) MathSciNetADSGoogle Scholar
  12. 12.
    Cho, H.T., et al.: Class. Quantum Gravity 27, 155004 (2010). arXiv:0912.2740 ADSCrossRefGoogle Scholar
  13. 13.
    Cho, H.T., et al.: Adv. Math. Phys., 281705 (2012). arXiv:1111.5024
  14. 14.
    Cho, H.T., et al.: Phys. Rev. D 83, 124034 (2011). arXiv:1104.1281v2 ADSGoogle Scholar
  15. 15.
    Lin, K., et al.: Int. J. Theor. Phys. 52, 1370–1378 (2013) CrossRefzbMATHGoogle Scholar
  16. 16.
    Fernando, S., Correa, J.: Phys. Rev. D 86, 064039 (2012). arXiv:1208.5442v2 ADSGoogle Scholar
  17. 17.
    Flachi, A., Lemos, J.P.S.: Phys. Rev. D 87, 024034 (2013). arXiv:1211.6212 ADSCrossRefGoogle Scholar
  18. 18.
    Mashhoon, B.: Phys. Rev. D 31, 290 (1985) MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    Ferrari, V., Mashhoon, B.: Phys. Rev. D 30, 295 (1984) MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    Cardoso, V., Miranda, A.S., Berti, E., Witeck, H., Zanchin, V.T.: Phys. Rev. D 79, 064016 (2009) MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    Dolan, S.R.: Phys. Rev. D 82, 104003 (2010) ADSCrossRefGoogle Scholar
  22. 22.
    Dolan, S.R., Ottewill, A.C.: Class. Quantum Gravity 26, 225003 (2009) MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    Dolan, S.R., Ottewill, A.C.: Phys. Rev. D 84, 104002 (2011) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of Electronic Science and Technology of ChinaChengduChina
  2. 2.Department of PhysicsChongqing UniversityChongqingChina
  3. 3.Institute of Theoretical PhysicsChina West Normal UniversityNanchongChina

Personalised recommendations