International Journal of Theoretical Physics

, Volume 52, Issue 5, pp 1466–1473 | Cite as

Quantum Private Comparison Based on Quantum Search Algorithm

  • Wei-Wei ZhangEmail author
  • Dan Li
  • Ting-Ting Song
  • Yan-Bing Li


We propose two quantum private comparison protocols based on quantum search algorithm with the help of a semi-honest third party. Our protocols utilize the properties of quantum search algorithm, the unitary operations, and the single-particle measurements. The security of our protocols is discussed with respect to both the outsider attack and the participant attack. There is no information leaked about the private information and the comparison result, even the third party cannot know these information.


Quantum cryptography Quantum computation Quantum private comparison 



This work is supported by NSFC (Grant Nos. 61272057, 61170270, 61100203, 61003286, 61121061), NCET (Grant No. NCET-10-0260), SRFDP (Grant No. 20090005110010), Beijing Natural Science Foundation (Grant Nos. 4112040, 4122054), the Fundamental Research Funds for the Central Universities (Grant No. 2011YB01).


  1. 1.
    Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, pp. 175–179. IEEE, New York (1984) Google Scholar
  2. 2.
    Ekert, A.K.: Quantum cryptography based on Bell theorem. Phys. Rev. Lett. 67(6), 661–663 (1991) MathSciNetADSzbMATHCrossRefGoogle Scholar
  3. 3.
    Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68(21), 3121–3124 (1992) MathSciNetADSzbMATHCrossRefGoogle Scholar
  4. 4.
    Liu, B., Gao, F., Wen, Q.Y.: Single-photon multiparty quantum cryptographic protocols with collective detection. IEEE J. Quantum Electron. 47, 1389–1390 (2011) ADSGoogle Scholar
  5. 5.
    Hillery, M., Buzěk, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999) MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002) ADSCrossRefGoogle Scholar
  7. 7.
    Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003) ADSCrossRefGoogle Scholar
  8. 8.
    Lin, S., Wen, Q.Y., Gao, F., Zhu, F.C.: Quantum secure direct communication with chi-type entangled states. Phys. Rev. A 78, 064304 (2008) ADSCrossRefGoogle Scholar
  9. 9.
    Zhang, W.-W., Gao, F., Liu, B., et al.: Quantum Inf. Process. (2012). doi: 10.1007/s11128-012-0423-6 Google Scholar
  10. 10.
    Zhang, W.-W., Gao, F., Liu, B., et al.: Int. J. Theor. Phys. (2012). doi: 10.1007/s10773-012-1354-9 Google Scholar
  11. 11.
    Lo, H.K.: Insecurity of quantum secure computations. Phys. Rev. A 56(2), 1154–1162 (1997) ADSCrossRefGoogle Scholar
  12. 12.
    Yang, Y.G., Wen, Q.Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A, Math. Theor. 42, 055305 (2009) MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    Yang, Y.G., Cao, W.F., Wen, Q.Y.: Secure quantum private comparison. Phys. Scr. 80(6), 065002 (2009) ADSCrossRefGoogle Scholar
  14. 14.
    Liu, W., Wang, Y.-B., Cui, W.: Quantum private comparison protocol based on Bell entangled states. Commun. Theor. Phys. 57, 583–588 (2012) ADSzbMATHCrossRefGoogle Scholar
  15. 15.
    Chen, X.-B., Xu, G., Niu, X.-X., Wen, Q.-Y., Yang, Y.-X.: An efficient protocol for the private comparison of equal information based on the triplet entangled state and single-particle measurement. Opt. Commun. 283, 1561–1565 (2010) ADSCrossRefGoogle Scholar
  16. 16.
    Liu, W., Wang, Y.-B., Jiang, Z.-T.: An efficient protocol for the quantum private comparison of equality with W state. Opt. Commun. 284, 3160–3163 (2011) ADSCrossRefGoogle Scholar
  17. 17.
    Liu, W., Wang, Y.-B., Jiang, Z.-T., Cao, Y.-Z.: A protocol for the quantum private comparison of equality with χ-type state. Int. J. Theor. Phys. 51, 69–77 (2012) MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Liu, W., Wang, Y.-B., Jiang, Z.-T., Cao, Y.-Z., Cui, W.: New quantum private comparison protocol using χ-type state. Int. J. Theor. Phys. 51, 1953–1960 (2012) MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Liu, W. Wang, Y.-B.: Quantum private comparison based on GHZ entangled states. Int. J. Theor. Phys. (2012) doi: 10.1007/s10773-012-1246-z Google Scholar
  20. 20.
    Jia, H.-Y., Wen, Q.-Y., Li, Y.-B., Gao, F.: Quantum private comparison using genuine four-particle entangled states. Int. J. Theor. Phys. 51, 1187–1194 (2012) MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Liu, B., Gao, F., Jia, H.-Y., Huang, W., Zhang, W.-W., Wen, Q.-Y.: Efficient quantum private comparison employing single photons and collective detection. Quantum Inf. Process. (2012). doi: 10.1007/s11128-012-0439-y Google Scholar
  22. 22.
    Tseng, H.-Y., Lin, J., Hwang, T.: New quantum private comparison protocol using EPR pairs. Quantum Inf. Process. 11, 373–384 (2012) MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Yang, Y.-G., Xia, J., Jia, X., Zhang, H.: Comment on “Quantum private comparison protocols with a semi-honest third party”. Quantum Inf. Process. (2012). doi: 10.1007/s11128-012-0433-4 Google Scholar
  24. 24.
    Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79(2), 325 (1997) ADSCrossRefGoogle Scholar
  25. 25.
    Hsu, L.-Y.: Quantum secret-sharing protocol based on Grover’s algorithm. Phys. Rev. A 68(2), 022306 (2003) ADSCrossRefGoogle Scholar
  26. 26.
    Hao, L., Li, J.-L., Long, G.-L.: Eavesdropping in a quantum secret sharing protocol based on Grover algorithm and its solution. Sci. China, Phys. Mech. Astron. 53(3), 491–495 (2010) ADSCrossRefGoogle Scholar
  27. 27.
    Tseng, H.-Y., Tsai, C.-W., Hwang, T., Li, C.-M.: Quantum secret sharing based on quantum search algorithm. Int. J. Theor. Phys. 51(10), 3101–3108 (2012) MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Wang, C., Hao, L., Song, S.-Y., Long, G.-L.: Quantum direct communication based on quantum search algorithm. Int. J. Quantum Inf. 8(3), 443–450 (2010) zbMATHCrossRefGoogle Scholar
  29. 29.
    Tseng, H.-Y., Tsai, C.-W., Hwang, T.: Controlled deterministic secure quantum communication based on quantum search algorithm. Int. J. Theor. Phys. 51(8), 2447–2454 (2012) MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Yao, A.C.: In: Proceedings of 23rd IEEE Symposium on Foundations of Computer Science (FOCS’ 82), Washington, DC, USA, p. 160 (1982) Google Scholar
  31. 31.
    Long, G.L., Liu, X.S.: Phys. Rev. A 65, 032302 (2002) ADSCrossRefGoogle Scholar
  32. 32.
    Gao, F., Qin, S.J., Wen, Q.Y., Zhu, F.C.: A simple participant attack on the Bradler-Dusek protocol. Quantum Inf. Comput. 7, 329 (2007) MathSciNetzbMATHGoogle Scholar
  33. 33.
    Qin, S.J., Gao, F., Wen, Q.Y., et al.: Cryptanalysis of the Hillery-Buzek-Berthiaume quantum secret-sharing protocol. Phys. Rev. A 76, 062324 (2007) ADSCrossRefGoogle Scholar
  34. 34.
    Gao, F., Wen, Q.Y., Zhu, F.C.: Comment on “Quantum exam” [Phys. Lett. A 350, 174 (2006)]. Phys. Lett. A 350, 174 (2006) CrossRefGoogle Scholar
  35. 35.
    Gao, F., Qin, S.J., Wen, Q.Y., et al.: Cryptanalysis of multiparty controlled quantum secure direct communication using Greenberger-Horne-Zeilinger state. Opt. Commun. 283, 192 (2010) ADSCrossRefGoogle Scholar
  36. 36.
    Gao, F., Guo, F.Z., Wen, Q.Y., et al.: Comment on “Experimental demonstration of a quantum protocol for byzantine agreement and liar detection”. Phys. Rev. Lett. 101, 208901 (2008) ADSCrossRefGoogle Scholar
  37. 37.
    Song, T.T., Zhang, J., Gao, F., et al.: Participant attack on quantum secret sharing based on entanglement swapping. Chin. Phys. B 18, 1333 (2009) ADSCrossRefGoogle Scholar
  38. 38.
    Guo, F.Z., Qin, S.J., Gao, F., et al.: Participant attack on a kind of MQSS schemes based on entanglement swapping. Eur. Phys. J. D 56, 445 (2010) ADSCrossRefGoogle Scholar
  39. 39.
    Lin, S., Gao, F., Guo, F.Z., et al.: Comment on “Multiparty quantum secret sharing of classical messages based on entanglement swapping”. Phys. Rev. A 76, 036301 (2007) MathSciNetADSCrossRefGoogle Scholar
  40. 40.
    Lin, S., Wen, Q.Y., Gao, F., et al.: Improving the security of multiparty quantum secret sharing based on the improved Bostrom-Felbinger protocol. Opt. Commun. 281, 4553 (2008) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Wei-Wei Zhang
    • 1
    • 2
    Email author
  • Dan Li
    • 1
  • Ting-Ting Song
    • 1
  • Yan-Bing Li
    • 1
    • 3
  1. 1.State Key Laboratory of Networking and Switching TechnologyBeijing University of Posts and TelecommunicationsBeijingChina
  2. 2.State Key Laboratory of Information SecurityInstitute of Software, Chinese Academy of SciencesBeijingChina
  3. 3.Beijing Electronic Science and Technology InstituteBeijingP.R. China

Personalised recommendations