International Journal of Theoretical Physics

, Volume 52, Issue 3, pp 765–778

Multi-Component Einstein–Cartan Cosmologies

Article

Abstract

Flat Friedmann universes filled by radiation, stiff fluid and a nonminimally coupled ghost scalar field with polynomial potentials of the fourth degree V(Φ) are investigated in the framework of the Einstein–Cartan theory. Exact solutions are obtained and analyzed for an arbitrary coupling constant ξ. It is shown that both singular and bouncing models with the late-time accelerated expansion are possible. A comparative analysis of the cosmological models with and without stiff fluid is carried out. The role of sources in the evolution of models is elucidated. Some conclusions from comparison of the presented results with other approaches in literature for accelerated expansion are made.

Keywords

Einstein–Cartan theory Ghost scalar field Polynomial potentials of the fourth degree Radiation Stiff fluid Cosmology 

References

  1. 1.
    Riess, A.G., et al.: Astrophys. J. 607, 665 (2004). arXiv:astro-ph/0402512 ADSCrossRefGoogle Scholar
  2. 2.
    Komatsu, E., et al.: Astrophys. J. Suppl. Ser. 180, 330 (2009). arXiv:0803.0547 [astro-ph] ADSCrossRefGoogle Scholar
  3. 3.
    Wood-Vasey, W.M., et al.: Astrophys. J. 666, 694 (2007). arXiv:astro-ph/0701041 ADSCrossRefGoogle Scholar
  4. 4.
    Tegmark, M., et al.: Astrophys. J. 606, 702 (2004). arXiv:astro-ph/0310725 ADSCrossRefGoogle Scholar
  5. 5.
    Astier, P., et al.: Astron. Astrophys. 447, 31 (2006). arXiv:astro-ph/0510447 ADSCrossRefGoogle Scholar
  6. 6.
    Jaffe, A.H., et al.: Phys. Rev. Lett. 86, 3475 (2001). arXiv:astro-ph/0007333 ADSCrossRefGoogle Scholar
  7. 7.
    Padmanabham, T.: Phys. Rep. 380, 335 (2003) Google Scholar
  8. 8.
    Peebles, P.J.E., Ratra, B.: Rev. Mod. Phys. 75, 599 (2003) MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    Sahni, V., Starobinsky, A.A.: Int. J. Mod. Phys. 15, 2105 (2006) MathSciNetADSMATHGoogle Scholar
  10. 10.
    Li, M., Li, X.-D., Wang, S., Wand, Y.: Dark energy (2011). arXiv:1103.5870 [astro-ph.CO]
  11. 11.
    Galiakhmetov, A.M.: Gravit. Cosmol. 13, 217 (2007) MathSciNetADSMATHGoogle Scholar
  12. 12.
    Galiakhmetov, A.M.: Class. Quantum Gravity 27, 055008 (2010) MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    Galiakhmetov, A.M.: Class. Quantum Gravity 28, 105013 (2011) MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    Cartan, E.: Ann. Sci. Éc. Norm. Super. 40, 325 (1923) MathSciNetGoogle Scholar
  15. 15.
    Cartan, E.: Ann. Sci. Éc. Norm. Super. 41, 1 (1924) MathSciNetGoogle Scholar
  16. 16.
    Cartan, E.: Ann. Sci. Éc. Norm. Super. 42, 17 (1925) MathSciNetMATHGoogle Scholar
  17. 17.
    Hehl, F.W., Obukhov, Yu.N.: Ann. Fond. Louis Broglie 32, 157 (2007). arXiv:0711.1535 [gr-qc] MathSciNetGoogle Scholar
  18. 18.
    Hehl, F.W., von der Heyde, P., Kerlik, G.D., Nester, J.M.: Rev. Mod. Phys. 48, 393 (1976) ADSCrossRefGoogle Scholar
  19. 19.
    Ponomarev, V.N., Barvinsky, A.O., Obuhov, Yu.N.: Geometrodynamics Methods and Gauge Approach in the Theory of Gravity. Energoatomizdat, Moscow (1985) (in Russian) Google Scholar
  20. 20.
    Minkevich, A.V., Garkun, A.S.: Class. Quantum Gravity 23, 4237 (2006). arXiv:gr-qc/0512130 MathSciNetADSMATHCrossRefGoogle Scholar
  21. 21.
    Kopczyńsky, W.A.: Phys. Lett. A 39, 219 (1972) ADSCrossRefGoogle Scholar
  22. 22.
    Tafel, J.: Bull. Acad. Pol. Sci., Ser. Math. Astron. Phys. 25, 593 (1977) MathSciNetMATHGoogle Scholar
  23. 23.
    Teixeira, A.: Phys. Rev. D 31, 2132 (1985) MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    Gasperini, M.: Gen. Relativ. Gravit. 30, 1703 (1998). arXiv:gr-qc/9805060 MathSciNetADSMATHCrossRefGoogle Scholar
  25. 25.
    Rumph, H.: Gen. Relativ. Gravit. 10, 456 (1979) Google Scholar
  26. 26.
    Seitz, M.: Class. Quantum Gravity 2, 919 (1985) MathSciNetADSCrossRefGoogle Scholar
  27. 27.
    Ivanenko, D.D., Pronin, P.I., Sardanashvili, G.A.: Gauge Theory of Gravity. Moscow State University Press, Moscow (1985) (in Russian) Google Scholar
  28. 28.
    Krechet, K.: Problems of gravitational interaction of the physical fields in an affine connected spaces. Dr. Sci. Thesis, Yaroslavl State Pedagogical University (1984) (in Russian) Google Scholar
  29. 29.
    Vandyck, M.A.J.: Class. Quantum Gravity 4, 683 (1987) MathSciNetADSCrossRefGoogle Scholar
  30. 30.
    Odintsov, S.D.: Europhys. Lett. 8, 309 (1989) ADSCrossRefGoogle Scholar
  31. 31.
    Buchbinder, I.L., Odintsov, S.D.: Europhys. Lett. 8, 595 (1989) ADSCrossRefGoogle Scholar
  32. 32.
    Kalinowski, M.W.: Acta Phys. Austriaca 23, 641 (1981) Google Scholar
  33. 33.
    German, G.: Class. Quantum Gravity 2, 455 (1982) MathSciNetADSCrossRefGoogle Scholar
  34. 34.
    Vladimirov, Yu.S., Popov, A.D.: Vestn. Mosk. Univ., Ser. Fiz., Astron. 4, 28 (1988) Google Scholar
  35. 35.
    Akdeniz, K., Kizilersü, A., Rizaoglu, E.: Phys. Lett. B 215, 81 (1988) MathSciNetADSCrossRefGoogle Scholar
  36. 36.
    Kuusk, P.: Gen. Relativ. Gravit. 21, 185 (1989) MathSciNetADSMATHCrossRefGoogle Scholar
  37. 37.
    Baker, W.M.: Class. Quantum Gravity 7, 717 (1990) ADSMATHCrossRefGoogle Scholar
  38. 38.
    Carloni, S., Capozziello, S., Leach, J.A., Dunsby, P.K.S.: Class. Quantum Gravity 25, 035008 (2008). arXiv:gr-qc/0701009 MathSciNetADSCrossRefGoogle Scholar
  39. 39.
    Bezrukov, F.L., Shaposhnikov, M.: Phys. Lett. B 659, 703 (2008). arXiv:0710.3755 [astro-ph] ADSCrossRefGoogle Scholar
  40. 40.
    Nozari, K., Sadatian, S.D.: Mod. Phys. Lett. A 23, 2933 (2008). arXiv:0710.0058 [astro-ph] ADSMATHCrossRefGoogle Scholar
  41. 41.
    De Simone, A., Hertzberg, M.P., Wilczek, F.: Phys. Lett. B 678, 1 (2009). arXiv:0812.4946 [astro-ph] ADSCrossRefGoogle Scholar
  42. 42.
    Barvinsky, A.O., Kamenshchik, A.Y., Kiefer, C., Starobinsky, A.A., Steinwachs, C.: J. Cosmol. Astropart. Phys. 12, 003 (2009). arXiv:0904.1698 [hep-ph] ADSCrossRefGoogle Scholar
  43. 43.
    Krause, A., Ng, S.-P.: Int. J. Mod. Phys. A 21, 1091 (2006). arXiv:hep-th/0409241 MathSciNetADSMATHCrossRefGoogle Scholar
  44. 44.
    Piazza, F., Tsujikawa, S.: J. Cosmol. Astropart. Phys. 0407, 004 (2004). arXiv:hep-th/0405054 ADSCrossRefGoogle Scholar
  45. 45.
    Holdom, B.: J. High Energy Phys. 0407, 063 (2004). arXiv:hep-th/0404109 ADSCrossRefGoogle Scholar
  46. 46.
    Scherrer, R.J.: Phys. Rev. Lett. 93, 011301 (2004). arXiv:astro-ph/0402316 ADSCrossRefGoogle Scholar
  47. 47.
    Galiakhmetov, A.M.: Gravit. Cosmol. 12, 147 (2006) MathSciNetADSGoogle Scholar
  48. 48.
    Bronnikov, K.A., Fabris, J.C.: Phys. Rev. Lett. 96, 251101 (2006). arXiv:gr-qc/0511109 MathSciNetADSCrossRefGoogle Scholar
  49. 49.
    Dubovsky, S.L., Rubakov, V.A.: Phys. Rev. D 67, 104014 (2003) ADSCrossRefGoogle Scholar
  50. 50.
    Galiakhmetov, A.M.: Gravit. Cosmol. 14, 190 (2008) MathSciNetADSMATHCrossRefGoogle Scholar
  51. 51.
    Peebles, P.J.E., Ratra, B.: Astrophys. J. 325, L17 (1988) ADSCrossRefGoogle Scholar
  52. 52.
    Garcia-Bellido, J., Linde, A.: Phys. Rev. D 51, 429 (1995) MathSciNetADSCrossRefGoogle Scholar
  53. 53.
    La, D., Steinhardt, P.J.: Phys. Rev. Lett. 62, 376 (1989) ADSCrossRefGoogle Scholar
  54. 54.
    Staniukovich, K.P., Melnikov, V.N.: Hydrodynamics, Fields and Constants in Gravitation Theory. Energoatomizdat, Moscow (1983) (in Russian) Google Scholar
  55. 55.
    de la Maccora, A.: Phys. Rev. D 72, 043508 (2005) ADSCrossRefGoogle Scholar
  56. 56.
    Linde, A.: Particle Physics and Inflationary Cosmology. Gordon and Breach, New York (1990) Google Scholar
  57. 57.
    Felder, G., Frolov, A., Kofman, L., Linde, A.: Phys. Rev. D 66, 023507 (2002). arXiv:hep-th/0202017 MathSciNetADSCrossRefGoogle Scholar
  58. 58.
    Cataldo, M., Chimento, L.P.: Astrophys. Space Sci. 333, 277 (2011) ADSMATHCrossRefGoogle Scholar
  59. 59.
    Galiakhmetov, A.M.: Int. J. Mod. Phys. D 21, 1250001 (2012) MathSciNetADSCrossRefGoogle Scholar
  60. 60.
    Krechet, V.G., Sadovnikov, D.V.: Gravit. Cosmol. 3, 133 (1997) ADSMATHGoogle Scholar
  61. 61.
    Khlopov, M.Y., Sakharov, A.S.: Gravit. Cosmol. 1, 164 (1995) ADSMATHGoogle Scholar
  62. 62.
    Buchbinder, I.L., Odintsov, S.D., Shapiro, I.L.: Phys. Lett. B 162, 92 (1985) ADSCrossRefGoogle Scholar
  63. 63.
    Buchbinder, I.L., Odintsov, S.D.: Acta Phys. Pol. B 18, 237 (1987) Google Scholar
  64. 64.
    Kamenshchik, A.Y., Moschella, U., Pasquier, V.: Phys. Lett. B 511, 265 (2001) ADSMATHCrossRefGoogle Scholar
  65. 65.
    Bento, M.C., Bertolami, O., Sen, A.A.: Phys. Rev. D 66, 043507 (2002) ADSCrossRefGoogle Scholar
  66. 66.
    Hipólito-Ricaldi, W.S., Velten, H.E.S., Zimdahl, W.: Phys. Rev. D 82, 063507 (2010). arXiv:1007.0675 [astro-ph] ADSCrossRefGoogle Scholar
  67. 67.
    Zimdahl, W., Velten, H.E.S., Hipólito-Ricaldi, W.S.: Int. J. Mod. Phys., Conf. Ser. 3, 312 (2011). arXiv:1111.4694v1 [astro-ph.Co] CrossRefGoogle Scholar
  68. 68.
    Aviles, A., Bonanno, L., Luongo, O., Quevedo, H.: Phys. Rev. D 84, 103520 (2011). arXiv:1109.3117v2 [gr-qc] ADSCrossRefGoogle Scholar
  69. 69.
    Nojiri, S., Odintsov, S.D.: Phys. Rev. D 68, 123512 (2003). arXiv:hep-th/0307288 MathSciNetADSCrossRefGoogle Scholar
  70. 70.
    Nojiri, S., Odintsov, S.D.: Phys. Rep. 505, 59 (2011). arXiv:1011.0544 [gr-qc] MathSciNetADSCrossRefGoogle Scholar
  71. 71.
    Capozziello, S., De Laurentis, M.: Phys. Rep. 509, 167 (2011) MathSciNetADSCrossRefGoogle Scholar
  72. 72.
    Bamba, K., Capozziello, S., Nojiri, S., Odintsov, S.D.: Dark energy cosmology: the equivalent description via different theoretical models and cosmography tests. arXiv:1205.3421 [gr-qc]

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Department of PhysicsDonetsk National Technical UniversityGorlovkaUkraine

Personalised recommendations