Advertisement

International Journal of Theoretical Physics

, Volume 52, Issue 2, pp 668–678 | Cite as

Challenges to Bohr’s Wave-Particle Complementarity Principle

  • Mario RabinowitzEmail author
Article

Abstract

Contrary to Bohr’s complementarity principle, in 1995 Rabinowitz proposed that by using entangled particles from the source it would be possible to determine which slit a particle goes through while still preserving the interference pattern in the Young’s two slit experiment. In 2000, Kim et al. used spontaneous parametric down conversion to prepare entangled photons as their source, and almost achieved this. In 2012, Menzel et al. experimentally succeeded in doing this. When the source emits entangled particle pairs, the traversed slit is inferred from measurement of the entangled particle’s location by using triangulation. The violation of complementarity breaches the prevailing probabilistic interpretation of quantum mechanics, and benefits Bohm’s pilot-wave theory.

Keywords

Wave-particle duality Complementarity principle Entanglement Uncertainty principle Two-slit interference Probabilistic quantum mechanics Bohm pilot wave 

References

  1. 1.
    Young, T.: Philos. Trans. R. Soc. Lond. 91, 12, 387 (1802) Google Scholar
  2. 2.
    Einstein, A.: Ann. Phys. 17, 132 (1905) zbMATHCrossRefGoogle Scholar
  3. 3.
    Taylor, G.I.: Proc. Camb. Philos. Soc. 15, 114 (1909) Google Scholar
  4. 4.
    Bohr, N.: Philos. Sci. 4, 289 (1937) CrossRefGoogle Scholar
  5. 5.
    Born, M.: Proc. R. Soc. Lond. A 410 (1934) Google Scholar
  6. 6.
    Heisenberg, W.: Z. Phys. A, Hadrons Nucl. 33, 879 (1925) zbMATHGoogle Scholar
  7. 7.
    Feynman, R.P.: QED: The Strange Theory of Light and Matter. Princeton University Press, Princeton (1985) Google Scholar
  8. 8.
    Bohm, D.J.: Phys. Rev. 85, 166 (1952) MathSciNetADSzbMATHCrossRefGoogle Scholar
  9. 9.
    Rabinowitz, M.: Mod. Phys. Lett. B 9, 763 (1995). arxiv.org/abs/physics/0302062 ADSCrossRefGoogle Scholar
  10. 10.
    Menzel, R., Puhlmann, D., Heuer, A., Schleich, W.P.: Proc. Natl. Acad. Sci. USA 109, 9314 (2012) CrossRefGoogle Scholar
  11. 11.
    Eichman, U., Berquist, J.C., Bollinger, J.J., Gilligan, J.M., Itano, W.M., Wineland, D.J., Raizen, M.G.: Phys. Rev. Lett. 70, 2359 (1993) ADSCrossRefGoogle Scholar
  12. 12.
    Grangier, P., Aspect, A., Vigue, J.: Phys. Rev. Lett. 54, 418 (1985) ADSCrossRefGoogle Scholar
  13. 13.
    Kim, Y.-H., Yu, R., Kulik, P., Shih, Y., Scully, M.O.: Phys. Rev. Lett. 84, 1 (2000) ADSCrossRefGoogle Scholar
  14. 14.
    Scully, M.O., Druhl, K.: Phys. Rev. A 25, 2208 (1982) ADSCrossRefGoogle Scholar
  15. 15.
    Mirell, S.: Phys. Rev. A 65, 032102 (2002) ADSCrossRefGoogle Scholar
  16. 16.
    Heisenberg, W.: The Physical Principles of the Quantum Theory (Dover republication in English). University of Chicago Press, Chicago (1930) Google Scholar
  17. 17.
    Aspect, A., Grangier, P., Roger, G.: Phys. Rev. Lett. 49, 91 (1982) ADSCrossRefGoogle Scholar
  18. 18.
    Aspect, A., Dalibard, J., Roger, G.: Phys. Rev. Lett. 49, 1804 (1982) MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    Kiess, T.E., Shih, Y.H., Sergienko, A.V., Alley, C.O.: Phys. Rev. Lett. 71, 3893 (1993) ADSCrossRefGoogle Scholar
  20. 20.
    Zeilinger, A., Gahler, R., Shull, C.G., Treimer, W., Mampe, W.: Rev. Mod. Phys. 60, 1067 (1988) ADSCrossRefGoogle Scholar
  21. 21.
    Badurek, G., Rauch, H., Tuppinger, D.: Phys. Rev. A 34, 2600 (1986) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Armor ResearchRedwood CityUSA

Personalised recommendations