Advertisement

International Journal of Theoretical Physics

, Volume 52, Issue 6, pp 1914–1924 | Cite as

Improved Protocols of Secure Quantum Communication Using W States

  • Chitra Shukla
  • Anindita BanerjeeEmail author
  • Anirban Pathak
Article

Abstract

Recently, Hwang et al. (Eur. Phys. J. D 61:785, 2011) and Yuan et al. (Int. J. Theor. Phys. 50:2403, 2011) have proposed two efficient protocols of secure quantum communication using 3-qubit and 4-qubit symmetric W state respectively. These two dense coding based protocols are generalized and their efficiencies are considerably improved. Simple bounds on the qubit efficiency of deterministic secure quantum communication (DSQC) and quantum secure direct communication (QSDC) protocols are obtained and it is shown that dense coding is not essential for designing of maximally efficient DSQC and QSDC protocols. This fact is used to design maximally efficient protocols of DSQC and QSDC using 3-qubit and 4-qubit W states.

Keywords

Secret Message Classical Information Dense Code Quantum Secure Direct Communication Decoy Photon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

AP thanks Department of Science and Technology (DST), India for support provided through the DST project No. SR/S2/LOP-0012/2010 and the Ministry of Education of the Czech Republic for support provided through the project CZ.1.05/2.1.00/03.0058.

References

  1. 1.
    Bennett, C.H., Brassard, G.: In: Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, p. 175 (1984) Google Scholar
  2. 2.
    Ekert, A.K.: Phys. Rev. Lett. 67, 661 (1991) MathSciNetADSzbMATHCrossRefGoogle Scholar
  3. 3.
    Bennett, C.H.: Phys. Rev. Lett. 68, 3121 (1992) MathSciNetADSzbMATHCrossRefGoogle Scholar
  4. 4.
    Long, G., et al.: Front. Phys. China 2, 251 (2007) ADSCrossRefGoogle Scholar
  5. 5.
    Shimizu, K., Imoto, N.: Phys. Rev. A 60, 157 (1999) ADSCrossRefGoogle Scholar
  6. 6.
    Hillery, M., Buzek, V., Bertaiume, A.: Phys. Rev. A 59, 1829 (1999) MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    Bostrom, K., Felbinger, T.: Phys. Rev. Lett. 89, 187902 (2002) ADSCrossRefGoogle Scholar
  8. 8.
    Goldenberg, L., Vaidman, L.: Phys. Rev. Lett. 75, 1239 (1995) MathSciNetADSzbMATHCrossRefGoogle Scholar
  9. 9.
    Lucamarini, M., Mancini, S.: Phys. Rev. Lett. 94, 140501 (2005) ADSCrossRefGoogle Scholar
  10. 10.
    Cai, Q.Y., Li, B.W.: Phys. Rev. A 69, 054301 (2004) ADSCrossRefGoogle Scholar
  11. 11.
    Deng, F.G., Long, G.L., Liu, X.S.: Phys. Rev. A 68, 042317 (2003) ADSCrossRefGoogle Scholar
  12. 12.
    Deng, F.G., Long, G.L.: Phys. Rev. A 68, 042315 (2003) ADSCrossRefGoogle Scholar
  13. 13.
    Zhu, A.D., Xia, Y., Fan, Q.B., Zhang, S.: Phys. Rev. A 73, 022338 (2006) ADSCrossRefGoogle Scholar
  14. 14.
    Yuan, H., et al.: Int. J. Theor. Phys. 50, 2403 (2011) zbMATHCrossRefGoogle Scholar
  15. 15.
    Tsai, C.W., Hsieh, C.R., Hwang, T.: Eur. Phys. J. D 61, 779 (2011) ADSCrossRefGoogle Scholar
  16. 16.
    Zhao, G., et al.: Procedia Eng. 29, 568 (2012) CrossRefGoogle Scholar
  17. 17.
    Hwang, T., Hwang, C.C., Tsai, C.W.: Eur. Phys. J. D 61, 785 (2011) ADSCrossRefGoogle Scholar
  18. 18.
    Wang, M.Y., Yan, F.L.: Chin. Phys. B 20, 120309 (2011) MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    Pradhan, B., Agrawal, P., Pati, A.K.: (2007). arXiv:0705.1917v1 [quant-ph]
  20. 20.
    Cabello, A.: Phys. Rev. Lett. 85, 5635 (2000) ADSCrossRefGoogle Scholar
  21. 21.
    Tsai, C.W., Hwang, T.: Opt. Commun. 283, 4397 (2010) ADSCrossRefGoogle Scholar
  22. 22.
    Wang, X.W.: Quantum Inf. Process. 8, 431 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Cao, H.J., Song, H.S.: Chin. Phys. Lett. 23, 290 (2006) ADSCrossRefGoogle Scholar
  24. 24.
    Wang, J., Zhang, Q., Tang, C.J.: Commun. Theor. Phys. (Beijing, China) 48, 637 (2007) MathSciNetADSCrossRefGoogle Scholar
  25. 25.
    Dong, L., et al.: Commun. Theor. Phys. 50, 359 (2008) ADSCrossRefGoogle Scholar
  26. 26.
    Yaun, H., et al.: Commun. Theor. Phys. 55, 984 (2011) ADSCrossRefGoogle Scholar
  27. 27.
    Banerjee, A., Pathak, A.: Phys. Lett. A (2012). doi: 10.1016/j.physleta.2012.08.032 Google Scholar
  28. 28.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information, p. 589. Cambridge University Press, New Delhi (2008) Google Scholar
  29. 29.
    Eible, M., et al.: Phys. Rev. Lett. 92, 077901 (2004) ADSCrossRefGoogle Scholar
  30. 30.
    Yao, X.-C., et al.: Phys. Rev. Lett. 105, 120402 (2010) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Chitra Shukla
    • 1
  • Anindita Banerjee
    • 2
    Email author
  • Anirban Pathak
    • 1
    • 3
  1. 1.Department of Physics and Material ScienceJaypee Institute of Information TechnologyNoidaIndia
  2. 2.Department of Physics and Center for Astroparticle Physics and Space ScienceBose InstituteKolkataIndia
  3. 3.RCPTM, Joint Laboratory of Optics of Palacky University and Institute of Physics of Academy of Science of the Czech Republic, Faculty of SciencePalacky UniversityOlomoucCzech Republic

Personalised recommendations