International Journal of Theoretical Physics

, Volume 51, Issue 9, pp 2909–2916 | Cite as

On the Fractional Hamilton and Lagrange Mechanics

  • Alireza Khalili Golmankhaneh
  • Ali Moslemi Yengejeh
  • Dumitru Baleanu


The fractional generalization of Hamiltonian mechanics is constructed by using the Lagrangian involving fractional derivatives. In this paper the equation of projectile motion with air friction using fractional Hamiltonian mechanics and equation for current loop involving electric source, a resistor, an inductor and a capacitor has been obtained. Furthermore, fractional optics has been introduced.


Fractional derivative Fractional Hamiltonian Fractional optics Fractional Lagrangian Nonconservative systems 


  1. 1.
    Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic, New York (1974) zbMATHGoogle Scholar
  2. 2.
    Miller, K.S., Ross, B.: An Introduction to the Fractional Integrals and Derivatives-Theory and Application. Wiley, New York (1993) Google Scholar
  3. 3.
    Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives Theory and Applications. Gordon & Breach, New York (1993) zbMATHGoogle Scholar
  4. 4.
    Gorenflo, R., Mainardi, F.: Fractional Calculus: Integral and Differential Equations of Fractional Orders, Fractals and Fractional Calculus in Continuum Mechanics. Springer, New York (1997) Google Scholar
  5. 5.
    Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999) zbMATHGoogle Scholar
  6. 6.
    Kilbas, A.A., Srivastava, H.H., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006) zbMATHGoogle Scholar
  7. 7.
    Magin, R.L.: Fractional Calculus in Bioengineering. Begell House, Connecticut (2006) Google Scholar
  8. 8.
    Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J.: Fractional Calculus Models and Numerical Methods (Series on Complexity, Nonlinearity and Chaos). World Scientific, Singapore (2012) Google Scholar
  9. 9.
    Riewe, F.: Nonconservative Lagrangian and Hamiltonian mechanics. Phys. Rev. E 53, 1890–1899 (1996) MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    Riewe, F.: Mechanics with fractional derivatives. Phys. Rev. E 55, 3581–3592 (1997) MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    Agrawal, O.P.: Formulation of Euler-Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 272, 368–379 (2002) MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Baleanu, D., Muslih, S.: Lagrangian formulation of classical fields within Riemann-Liouville fractional derivatives. Phys. Scr. 72, 119–121 (2005) MathSciNetADSzbMATHCrossRefGoogle Scholar
  13. 13.
    Muslih, S., D, B.: Hamiltonian formulation of systems with linear velocities within Riemann-Liouville fractional derivatives. J. Math. Anal. Appl. 304, 599–606 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Agrawal, O.P.: Fractional variational calculus and the transversality conditions. J. Phys. A, Math. Gen. 39, 10375–10384 (2006) ADSzbMATHCrossRefGoogle Scholar
  15. 15.
    Tarasov, V.E.: Fractional variation for dynamical systems: Hamilton and Lagrange approaches. J. Phys. 39(26), 8409–8425 (2006) MathSciNetADSzbMATHGoogle Scholar
  16. 16.
    Rabei, E.M., Nawafleh, K.I., Hiijawi, R.S., Muslih, S.I., Baleanu, D.: The Hamilton formalism with fractional derivatives. J. Math. Anal. Appl. 327, 891–897 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Klimek, K.: Lagrangian and Hamiltonian fractional sequential mechanics. Czechoslov. J. Phys. 52, 1247–1253 (2002) MathSciNetADSzbMATHCrossRefGoogle Scholar
  18. 18.
    Laskin, N.: Fractional quantum mechanics. Phys. Rev. E 62, 3135–3145 (2000) ADSCrossRefGoogle Scholar
  19. 19.
    Naber, M.: Time fractional Schrodinger equation. J. Math. Phys. 45, 3339–3352 (2004) MathSciNetADSzbMATHCrossRefGoogle Scholar
  20. 20.
    Tarasov, V.E.: Continuous medium model for fractal media. Phys. Lett. A 336, 167–174 (2005) ADSzbMATHCrossRefGoogle Scholar
  21. 21.
    Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Phys. Rep. 371, 461–580 (2002) MathSciNetADSzbMATHCrossRefGoogle Scholar
  22. 22.
    Tarawneh, K.M., Rabei, E.M., Ghassib, H.B.: Lagrangian and Hamiltonian formulations of the damped harmonic oscillator using Caputo fractional derivative. J. Dyn. Syst. Geom. Theories 8(1), 59–70 (2010) MathSciNetzbMATHGoogle Scholar
  23. 23.
    Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000) zbMATHCrossRefGoogle Scholar
  24. 24.
    West, B.J., Bologna, M., Grigolini, P.: Physics of Fractal Operators. Springer, Berlin (2003) CrossRefGoogle Scholar
  25. 25.
    Golmankhaneh, A.K., Golmankhaneh, A.K., Baleanu, D., Baleanu, M.C.: Fractional odd-dimensional mechanics. Adv. Differ. Equ. 2011, 526472 (2011) MathSciNetGoogle Scholar
  26. 26.
    Baleanu, D., Alireza, K., Golmankhaneh, A.K., Golmankhaneh, A.L., Nigmatullin, R.R.: Newtonian law with memory. Nonlinear Dyn. 60, 81–86 (2010) zbMATHCrossRefGoogle Scholar
  27. 27.
    Baleanu, D., Golmankhaneh, A.K., Nigmatullin, R.R., Golmankhaneh, A.K.: Fractional Newtonian mechanics. Cent. Eur. J. Phys. 8, 120–125 (2010) CrossRefGoogle Scholar
  28. 28.
    Machado, J.T., Kiryakova, V., Mainardi, F.: Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 16(3), 1140–1153 (2011) MathSciNetADSzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Alireza Khalili Golmankhaneh
    • 1
  • Ali Moslemi Yengejeh
    • 2
  • Dumitru Baleanu
    • 3
    • 4
  1. 1.Department of PhysicsIslamic Azad University, Urmia BranchUrmiaIran
  2. 2.Department of PhysicsIslamic Azad University, Central Tehran BranchTehranIran
  3. 3.Department of Mathematics and Computer ScienceÇankaya UniversityAnkaraTurkey
  4. 4.Institute of Space SciencesMagurele-BucharestRomania

Personalised recommendations