Advertisement

International Journal of Theoretical Physics

, Volume 51, Issue 9, pp 2909–2916 | Cite as

On the Fractional Hamilton and Lagrange Mechanics

  • Alireza Khalili Golmankhaneh
  • Ali Moslemi Yengejeh
  • Dumitru Baleanu
Article

Abstract

The fractional generalization of Hamiltonian mechanics is constructed by using the Lagrangian involving fractional derivatives. In this paper the equation of projectile motion with air friction using fractional Hamiltonian mechanics and equation for current loop involving electric source, a resistor, an inductor and a capacitor has been obtained. Furthermore, fractional optics has been introduced.

Keywords

Fractional derivative Fractional Hamiltonian Fractional optics Fractional Lagrangian Nonconservative systems 

References

  1. 1.
    Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic, New York (1974) MATHGoogle Scholar
  2. 2.
    Miller, K.S., Ross, B.: An Introduction to the Fractional Integrals and Derivatives-Theory and Application. Wiley, New York (1993) Google Scholar
  3. 3.
    Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives Theory and Applications. Gordon & Breach, New York (1993) MATHGoogle Scholar
  4. 4.
    Gorenflo, R., Mainardi, F.: Fractional Calculus: Integral and Differential Equations of Fractional Orders, Fractals and Fractional Calculus in Continuum Mechanics. Springer, New York (1997) Google Scholar
  5. 5.
    Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999) MATHGoogle Scholar
  6. 6.
    Kilbas, A.A., Srivastava, H.H., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006) MATHGoogle Scholar
  7. 7.
    Magin, R.L.: Fractional Calculus in Bioengineering. Begell House, Connecticut (2006) Google Scholar
  8. 8.
    Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J.: Fractional Calculus Models and Numerical Methods (Series on Complexity, Nonlinearity and Chaos). World Scientific, Singapore (2012) Google Scholar
  9. 9.
    Riewe, F.: Nonconservative Lagrangian and Hamiltonian mechanics. Phys. Rev. E 53, 1890–1899 (1996) MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    Riewe, F.: Mechanics with fractional derivatives. Phys. Rev. E 55, 3581–3592 (1997) MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    Agrawal, O.P.: Formulation of Euler-Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 272, 368–379 (2002) MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Baleanu, D., Muslih, S.: Lagrangian formulation of classical fields within Riemann-Liouville fractional derivatives. Phys. Scr. 72, 119–121 (2005) MathSciNetADSMATHCrossRefGoogle Scholar
  13. 13.
    Muslih, S., D, B.: Hamiltonian formulation of systems with linear velocities within Riemann-Liouville fractional derivatives. J. Math. Anal. Appl. 304, 599–606 (2005) MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Agrawal, O.P.: Fractional variational calculus and the transversality conditions. J. Phys. A, Math. Gen. 39, 10375–10384 (2006) ADSMATHCrossRefGoogle Scholar
  15. 15.
    Tarasov, V.E.: Fractional variation for dynamical systems: Hamilton and Lagrange approaches. J. Phys. 39(26), 8409–8425 (2006) MathSciNetADSMATHGoogle Scholar
  16. 16.
    Rabei, E.M., Nawafleh, K.I., Hiijawi, R.S., Muslih, S.I., Baleanu, D.: The Hamilton formalism with fractional derivatives. J. Math. Anal. Appl. 327, 891–897 (2007) MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Klimek, K.: Lagrangian and Hamiltonian fractional sequential mechanics. Czechoslov. J. Phys. 52, 1247–1253 (2002) MathSciNetADSMATHCrossRefGoogle Scholar
  18. 18.
    Laskin, N.: Fractional quantum mechanics. Phys. Rev. E 62, 3135–3145 (2000) ADSCrossRefGoogle Scholar
  19. 19.
    Naber, M.: Time fractional Schrodinger equation. J. Math. Phys. 45, 3339–3352 (2004) MathSciNetADSMATHCrossRefGoogle Scholar
  20. 20.
    Tarasov, V.E.: Continuous medium model for fractal media. Phys. Lett. A 336, 167–174 (2005) ADSMATHCrossRefGoogle Scholar
  21. 21.
    Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Phys. Rep. 371, 461–580 (2002) MathSciNetADSMATHCrossRefGoogle Scholar
  22. 22.
    Tarawneh, K.M., Rabei, E.M., Ghassib, H.B.: Lagrangian and Hamiltonian formulations of the damped harmonic oscillator using Caputo fractional derivative. J. Dyn. Syst. Geom. Theories 8(1), 59–70 (2010) MathSciNetMATHGoogle Scholar
  23. 23.
    Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000) MATHCrossRefGoogle Scholar
  24. 24.
    West, B.J., Bologna, M., Grigolini, P.: Physics of Fractal Operators. Springer, Berlin (2003) CrossRefGoogle Scholar
  25. 25.
    Golmankhaneh, A.K., Golmankhaneh, A.K., Baleanu, D., Baleanu, M.C.: Fractional odd-dimensional mechanics. Adv. Differ. Equ. 2011, 526472 (2011) MathSciNetGoogle Scholar
  26. 26.
    Baleanu, D., Alireza, K., Golmankhaneh, A.K., Golmankhaneh, A.L., Nigmatullin, R.R.: Newtonian law with memory. Nonlinear Dyn. 60, 81–86 (2010) MATHCrossRefGoogle Scholar
  27. 27.
    Baleanu, D., Golmankhaneh, A.K., Nigmatullin, R.R., Golmankhaneh, A.K.: Fractional Newtonian mechanics. Cent. Eur. J. Phys. 8, 120–125 (2010) CrossRefGoogle Scholar
  28. 28.
    Machado, J.T., Kiryakova, V., Mainardi, F.: Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 16(3), 1140–1153 (2011) MathSciNetADSMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Alireza Khalili Golmankhaneh
    • 1
  • Ali Moslemi Yengejeh
    • 2
  • Dumitru Baleanu
    • 3
    • 4
  1. 1.Department of PhysicsIslamic Azad University, Urmia BranchUrmiaIran
  2. 2.Department of PhysicsIslamic Azad University, Central Tehran BranchTehranIran
  3. 3.Department of Mathematics and Computer ScienceÇankaya UniversityAnkaraTurkey
  4. 4.Institute of Space SciencesMagurele-BucharestRomania

Personalised recommendations