International Journal of Theoretical Physics

, Volume 51, Issue 8, pp 2392–2397 | Cite as

Hawking Radiation of the Charged Particles via Tunneling from the (n+2)-Dimensional Topological Reissner-Nordström-de Sitter Black Hole

Article
  • 72 Downloads

Abstract

Extending Parikh-Wilczek’s semi-classical tunneling method, we discuss the Hawking radiation of the charged massive particles via tunneling from the cosmological horizon of (n+2)-dimensional Topological Reissner-Nordström-de Sitter black hole.The result shows that, when energy conservation and electric charge conservation are taken into account, the derived spectrum deviates from the pure thermal one, but satisfies the unitary theory, which provides a probability for the solution of the information loss paradox.

Keywords

Quantum tunneling Energy conservation Electric charge conservation Hawking radiation 

References

  1. 1.
    Hawking, S.W.: Nature 30, 248 (1974) Google Scholar
  2. 2.
    Hawking, S.W.: Commun. Math. Phys. 43, 199 (1975) MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    Gubser, S.S., Klebanov, I.R., Polyakov, A.M.: Phys. Lett. B 428, 105 (1998) MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    Kraus, P., Wilczek, F.: Nucl. Phys. B 433, 403 (1995) ADSCrossRefGoogle Scholar
  5. 5.
    Parikh, M.K., Wiltzek, F.: Phys. Rev. Lett. 85, 5024 (2000) ADSCrossRefGoogle Scholar
  6. 6.
    Parikh, M.K.: hep-th/0402166 (2004)
  7. 7.
    Parikh, M.K.: hep-th/0405160 (2004)
  8. 8.
    Hemming, S., Keski-Vakkuri, E.: Phys. Rev. D, Part. Fields 64, 044006 (2001) MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    Medved, A.J.M.: Phys. Rev. D, Part. Fields 66, 124009 (2002) MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    Vagenas, E.C.: Mod. Phys. Lett. A 20, 2449 (2005) MathSciNetADSMATHCrossRefGoogle Scholar
  11. 11.
    Angheben, M., Nadalini, M., Vanzo, L., Zerbini, S.: J. High Energy Phys. 05, 014 (2005) MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    Zhang, J.Y., Zhao, Z.: Mod. Phys. Lett. A 20, 1673 (2005) ADSMATHCrossRefGoogle Scholar
  13. 13.
    Jiang, Q.Q., Wu, S.Q.: Phys. Lett. B 635, 151 (2006) MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    Jiang, Q.Q., Wu, S.Q., Cai, X.: Phys. Rev. D 73, 064003 (2006) MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    Wu, S.Q., Jiang, Q.Q.: J. High Energy Phys. 0603, 079 (2006) MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    Zhang, J.Y., Zhao, Z.: Phys. Lett. B 618, 14 (2005) MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    Zhang, J.Y., Zhao, Z.: J. High Energy Phys. 0505, 055 (2005) CrossRefGoogle Scholar
  18. 18.
    Zhang, J.Y., Zhao, Z.: Nucl. Phys. B 725, 173 (2005) ADSMATHCrossRefGoogle Scholar
  19. 19.
    Hu, Y.P., Zhang, J.J., Zhao, Z.: Mod. Phys. Lett. A 21, 2143 (2006) MathSciNetADSMATHCrossRefGoogle Scholar
  20. 20.
    Ding, C.K., Jing, J.L.: Class. Quantum Gravity 25, 145015 (2008) MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    Ding, C.K., Jing, J.L.: Gen. Relativ. Gravit. 41, 2529 (2009) MathSciNetADSMATHCrossRefGoogle Scholar
  22. 22.
    Ding, C.K., Wang, M.J., Jing, J.L.: Phys. Lett. B 676, 99 (2009) MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    Liu, C.Z., Zhang, J.Y., Zhao, Z.: Phys. Lett. B 639, 670 (2006) ADSCrossRefGoogle Scholar
  24. 24.
    Liu, W.B.: Phys. Lett. B 634, 541 (2006) MathSciNetADSCrossRefGoogle Scholar
  25. 25.
    Ma, Z.Z.: Phys. Lett. B 666, 376 (2008) MathSciNetADSCrossRefGoogle Scholar
  26. 26.
    Ma, Z.Z.: Class. Quantum Gravity 26, 045002 (2009) ADSCrossRefGoogle Scholar
  27. 27.
    Yang, S.Z.: Chin. Phys. Lett. 22, 2492 (2005) ADSCrossRefGoogle Scholar
  28. 28.
    Painleve, P., Hebd, C.R.: Seances Acad. Sci. 173, 677 (1921) MATHGoogle Scholar
  29. 29.
    Zhang, J.Y., Zhao, Z.: J. High Energy Phys. 055, 1005 (2005) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.College of Mathematic and InformationChina West Normal UniversityNanchongPeople’s Republic of China

Personalised recommendations