Skip to main content
Log in

Fractional Pais–Uhlenbeck Oscillator

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper we study the fractional Lagrangian of Pais–Uhlenbeck oscillator. We obtained the fractional Euler–Lagrangian equation of the system and then we studied the obtained Euler–Lagrangian equation numerically. The numerical study is based on the so-called Grünwald–Letnikov approach, which is power series expansion of the generating function (backward and forward difference) and it can be easy derived from the Grünwald–Letnikov definition of the fractional derivative. This approach is based on the fact, that Riemman–Liouville fractional derivative is equivalent to the Grünwald–Letnikov derivative for a wide class of the functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Pais, A., Uhlenbeck, G.E.: On field theories with non-localized action. Phys. Rev. 79, 145 (1950)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Thirring, W.: Regularization as a consequence of higher order equations. Phys. Rev. 77, 570 (1950)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Bender, C.M., Mannheim, P.D.: No-ghost theorem for the fourth-order derivative Pais–Uhlenbeck oscillator model. Phys. Rev. Lett. 100, 110402 (2008)

    Article  ADS  Google Scholar 

  4. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, vol. 204. North-Holland, Amsterdam (2006)

    Google Scholar 

  5. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  6. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Yverdon (1993)

    MATH  Google Scholar 

  7. Carpinteri, A., Mainardi, F.: Fractals and Fractional Calculus in Continuum Mechanics. Springer, Berlin (1997)

    MATH  Google Scholar 

  8. Baleanu, D., Vacaru, S.I.: Fedosov quantization of fractional Lagrange spaces. Int. J. Theor. Phys. 50(1), 233 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Muslih, S.I., Agrawal, O.P., Baleanu, D.: A fractional Schrödinger equation and its solution. Int. J. Theor. Phys. 49(8), 1746 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Nigmatullin, R.R., Baleanu, D.: Is it possible to derive Newtonian equations of motion with memory? Int. J. Theor. Phys. 49(4), 701 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Riewe, F.: Nonconservative Lagrangian and Hamiltonian mechanics. Phys. Rev. E 53, 1890 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  12. Agrawal, O.P.: Formulation of Euler–Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 272, 368 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Klimek, M.: Lagrangian and Hamiltonian fractional sequential mechanics. Czechoslov. J. Phys. 52, 1247 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Baleanu, D., Avkar, T.: Lagrangians with linear velocities within Riemann–Liouville fractional derivatives. Nuovo Cimento B 119, 73 (2004)

    ADS  Google Scholar 

  15. Cresson, J.: Fractional embedding of differential operators and Lagrangian systems. J. Math. Phys. 48, 033504 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  16. Rabei, E.M., Nawafleh, K.I., Hijjawi, R.S., Muslih, S.I., Baleanu, D.: J. Math. Anal. Appl. 327(2), 891 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Diethelm, K., Ford, N.J.: Numerical solution of the Bagley–Torvik equation. BIT 42(3), 490 (2002)

    MathSciNet  MATH  Google Scholar 

  18. Ray, S.S., Bera, R.K.: Analytical solution of the Bagley Torvik equation by Adomian decomposition method. Appl. Math. Comput. 168(1), 398 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Diethelm, K.: An algorithm for the numerical solution of differential equations of fractional order. Electron. Trans. Numer. Anal. 5, 1 (1997)

    MathSciNet  MATH  Google Scholar 

  20. Momani, S., Al-Khaled, K.: Numerical solutions for systems of fractional differential equations by the decomposition method. Appl. Math. Comput. 162(3), 1351 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Podlubny, I.: Matrix approach to discrete fractional calculus. Fract. Calcul. Appl. Anal. 3(4), 359 (2010)

    MathSciNet  Google Scholar 

  22. Podlubny, I., Chechkin, A.V., Skovranek, T., Chen, Y.Q., Vinagre, B.: Matrix approach to discrete fractional calculus II: partial fractional differential equations. J. Comput. Phys. 228(8), 3137 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Bender, C.M., Mannheim, P.: No-ghost theorem for the fourth-order derivative Pais–Uhlenbeck oscillator model. Phys. Rev. Lett. 100, 110402 (2008)

    Article  ADS  Google Scholar 

  24. Mannheim, P.D., Davidson, A.: Dirac quantization of the Pais–Uhlenbeck fourth order oscillator. Phys. Rev. A 71, 042110 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  25. Bender, C.M., Mannheim, P.: Exactly solvable PT-symmetric Hamiltonian having no Hermitian counterpart. Phys. Rev. D 78, 025022 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  26. Mostafazadeh, A.: A Hamiltonian formulation of the Pais–Uhlenbeck oscillator that yields a stable and unitary quantum system. Phys. Lett. A 375, 93 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  27. Petras, I.: Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation. Series: Nonlinear Physical Science. Springer, London (2011)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to that to the referee for his (her) very useful comments and remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dumitru Baleanu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baleanu, D., Petras, I., Asad, J.H. et al. Fractional Pais–Uhlenbeck Oscillator. Int J Theor Phys 51, 1253–1258 (2012). https://doi.org/10.1007/s10773-011-1000-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-011-1000-y

Keywords

Navigation