Advertisement

International Journal of Theoretical Physics

, Volume 51, Issue 4, pp 1089–1099 | Cite as

The Thermodynamic Evolution of the Cosmological Event Horizon

  • Scott Funkhouser
Article

Abstract

By manipulating the integral expression for the proper radius R e of the cosmological event horizon (CEH) in a Friedmann-Robertson-Walker (FRW) universe we obtain an analytical expression for the change δR e in response to a uniform fluctuation δρ in the average cosmic background density ρ. We stipulate that the fluctuation arises within a vanishing interval of proper time, during which the CEH is approximately stationary, and evolves subsequently such that δρ/ρ is constant. The respective variations 2πR e δR e and δE e in the horizon entropy S e and enclosed energy E e should be therefore related through the cosmological Clausius relation. In that manner we find that the temperature T e of the CEH at an arbitrary time in a flat FRW universe is E e /S e , which recovers asymptotically the usual static de Sitter temperature. Furthermore it is proven that during radiation-dominance and in late times the CEH conforms to the fully dynamical First Law T e dS e =PdV e −dE e , where V e is the enclosed volume and P is the average cosmic pressure.

Keywords

Cosmological event horizon First law of thermodynamics Hawking temperature 

References

  1. 1.
    Gibbons, G.W., Hawking, S.W.: Phys. Rev. D 15, 2738 (1977) MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    Padmanabhan, T.: Class. Quantum Gravity 19, 5387 (2002) MathSciNetADSzbMATHCrossRefGoogle Scholar
  3. 3.
    Padmanabhan, T.: Phys. Rep. 406, 49 (2005) MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    Cai, R.G.: Nucl. Phys. B 628, 375 (2002) ADSzbMATHCrossRefGoogle Scholar
  5. 5.
    Cai, R.G.: Phys. Lett. B 525, 331 (2002) MathSciNetADSzbMATHCrossRefGoogle Scholar
  6. 6.
    Jacobson, T., Parentani, R.: Found. Phys. 33, 323 (2003) MathSciNetCrossRefGoogle Scholar
  7. 7.
    Akbar, M., Cai, R.G.: Phys. Rev. D 75, 084003 (2007) ADSCrossRefGoogle Scholar
  8. 8.
    Cai, R., Kim, S.: J. High Energy Phys. 0502, 050 (2005) MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    Hayward, S.A.: Class. Quantum Gravity 15, 3147 (1998) MathSciNetADSzbMATHCrossRefGoogle Scholar
  10. 10.
    Hayward, S.A., Mukohyama, S., Ashworth, M.C.: Phys. Lett. A 256, 347 (1999) MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    Smoot, G.: (2010). arXiv:1003.5952
  12. 12.
    Gong, Y., Wang, A.: Phys. Rev. Lett. 99, 211301 (2007) MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    Bak, D., Rey, S.J.: Class. Quantum Gravity 17, L83 (2000) MathSciNetADSzbMATHCrossRefGoogle Scholar
  14. 14.
    Davies, P.C.W.: Class. Quantum Gravity 4, L225 (1987) ADSCrossRefGoogle Scholar
  15. 15.
    Davies, P.C.W.: Ann. Inst. Henri Poincaré Probab. Stat. 3, 297 (1988) Google Scholar
  16. 16.
    Davies, P.C.W.: Class. Quantum Gravity 5, 1349 (1988) ADSzbMATHCrossRefGoogle Scholar
  17. 17.
    Pollock, M.D., Singh, T.P.: Class. Quantum Gravity 6, 901 (1989) MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    Pavon, D.: Class. Quantum Gravity 7, 487 (1990) MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    Pavon, D.: Phys. Rev. Lett. 84, 2072 (2000) MathSciNetCrossRefGoogle Scholar
  20. 20.
    Izquierdo, G., Pavon, D.: Phys. Lett. B 633, 420 (2006) MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    Banks, T., Fischler, W.: (2003). arXiv:astro-ph/0307459
  22. 22.
    Davies, P.C.W., Davis, T.M., Lineweaver, C.H.: Class. Quantum Gravity 20, 2753 (2003) MathSciNetADSzbMATHCrossRefGoogle Scholar
  23. 23.
    Wang, B., Gong, Y., Abdalla, E.: (2007). arXiv:0705.1264v2
  24. 24.
    Wang, B., Gong, Y., Abdalla, E.: Phys. Rev. D 74, 083520 (2006) ADSCrossRefGoogle Scholar
  25. 25.
    Li, M.: Phys. Lett. B 603, 1 (2004) ADSCrossRefGoogle Scholar
  26. 26.
    Barbachoux, C., Gariel, J., Denmat, G.L.: (2007). arXiv:0705.0473

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.SPAWAR Systems Center AtlanticNorth CharlestonUSA

Personalised recommendations