International Journal of Theoretical Physics

, Volume 51, Issue 3, pp 667–683

Hydrodynamics, Particle Relabelling and Relativity

Article
  • 79 Downloads

Abstract

Using the wave equation as an example, it is shown how to extend the hydrodynamic Lagrangian-picture method of constructing field evolution using a continuum of trajectories to second-order theories. The wave equation is represented through Eulerian-picture models that are distinguished by their Lorentz transformation properties. Introducing the idea of the relativity of the particle label, it is demonstrated how the corresponding trajectory models are compatible with the relativity principle. It is also shown how the Eulerian variational formulation may be obtained by canonical transformation from the Lagrangian picture, and how symmetries in the Lagrangian picture may be used to generate Eulerian conserved charges.

Keywords

Hydrodynamics Lagrangian picture Particle label Relativity Symmetries 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wyatt, R.E.: Quantum Dynamics with Trajectories. Springer, New York (2005) MATHGoogle Scholar
  2. 2.
    Holland, P.: Ann. Phys. 315, 503 (2005) MathSciNetADSGoogle Scholar
  3. 3.
    Holland, P.: Proc. R. Soc. A 461, 3659 (2005) MathSciNetADSMATHCrossRefGoogle Scholar
  4. 4.
    Bohm, D., Hiley, B.J.: The Undivided Universe. Routledge, London (1993), Chap. 11 Google Scholar
  5. 5.
    Morrison, P.J.: Rev. Mod. Phys. 70, 467 (1998) MathSciNetADSMATHCrossRefGoogle Scholar
  6. 6.
    Courant, R., Hilbert, D.: Methods of Mathematical Physics, vol. 2, p. 5. Interscience, New York (1962) MATHGoogle Scholar
  7. 7.
    van Saarloos, W.: Physica A 108, 557 (1981) ADSCrossRefGoogle Scholar
  8. 8.
    Pauli, W.: Theory of Relativity. Pergamon, London (1958), Sect. 45 MATHGoogle Scholar
  9. 9.
    DeWitt, B.S.: In: Witten, L. (ed.) Gravitation: An Introduction to Current Research. Wiley, New York (1963), Chap. 8 Google Scholar
  10. 10.
    Bressan, A.: Relativistic Theories of Materials. Springer, New York (1978) MATHCrossRefGoogle Scholar
  11. 11.
    Brown, J.D., Marolf, D.: Phys. Rev. D 53, 1835 (1996) MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    Hill, R.N.: In: Llosa, J. (ed.) Relativistic Action at a Distance: Classical and Quantum Aspects. Lecture Notes in Physics, vol. 162. Springer, Berlin (1982) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Green Templeton CollegeUniversity of OxfordOxfordEngland

Personalised recommendations