International Journal of Theoretical Physics

, Volume 51, Issue 2, pp 428–437 | Cite as

Quark Confinement Mechanism and the Scale Λ QCD

Article

Abstract

The confinement mechanism proposed earlier by the author is applied to problem of arising the so-called scale Λ QCD within the framework of QCD. The natural physical assumption consists of that 1/Λ QCD  ∼ 〈r〉 where 〈r〉 is a characteristic size of hadron (radius of confinement). The above confinement mechanism allows us to calculate 〈r〉 for mesons in terms of quark and gluonic degrees of freedom and this permits to conclude that Λ QCD should slightly change from hadron to hadron.

Keywords

Quantum chromodynamics Confinement 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Huang, K.: Quarks, Leptons and Gauge Fields. World-Scientific, Singapore (1982) Google Scholar
  2. 2.
    Yndurain, F.J.: Quantum Chromodynamics. An Introduction to the Theory of Quarks and Gluons. Springer, Berlin (1983) MATHGoogle Scholar
  3. 3.
    Duke, D.W., Roberts, R.G.: Phys. Rep. 120, 275 (1985) CrossRefADSGoogle Scholar
  4. 4.
    Nakamura, K., Particle Data Group: J. Phys. G, Nucl. Part. Phys. 37, 075021 (2010) CrossRefADSGoogle Scholar
  5. 5.
    Goncharov, Yu.P.: Mod. Phys. Lett. A 16, 557 (2001) CrossRefMathSciNetGoogle Scholar
  6. 6.
    Goncharov, Yu.P.: Phys. Lett. B 617, 67 (2005) CrossRefADSGoogle Scholar
  7. 7.
    Goncharov, Yu.P.: In: Kreitler, P.V. (ed.) New Developments in Black Hole Research, pp. 67–121. Nova Science Publishers, New York (2006). Chap. 3, arXiv:hep-th/0512099 Google Scholar
  8. 8.
    Wilson, K.: Phys. Rev. D 10, 2445 (1974) CrossRefADSGoogle Scholar
  9. 9.
    Bander, M.: Phys. Rep. 75, 205 (1981) CrossRefADSGoogle Scholar
  10. 10.
    Perkins, D.H.: Introduction to High Energy Physics. Cambridge University Press, Cambridge (2000) Google Scholar
  11. 11.
    Goncharov, Yu.P.: Europhys. Lett. 62, 684 (2003) CrossRefADSGoogle Scholar
  12. 12.
    Goncharov, Yu.P., Choban, E.A.: Mod. Phys. Lett. A 18, 1661 (2003) CrossRefMATHADSGoogle Scholar
  13. 13.
    Goncharov, Yu.P., Bytsenko, A.A.: Phys. Lett. B 602, 86 (2004) CrossRefADSGoogle Scholar
  14. 14.
    Goncharov, Yu.P.: Nucl. Phys. A 808, 73 (2008) CrossRefADSGoogle Scholar
  15. 15.
    Goncharov, Yu.P.: Phys. Lett. B 641, 237 (2006) CrossRefADSGoogle Scholar
  16. 16.
    Goncharov, Yu.P.: Phys. Lett. B 652, 310 (2007) CrossRefADSGoogle Scholar
  17. 17.
    Goncharov, Yu.P.: Mod. Phys. Lett. A 22, 2273 (2007) CrossRefMATHADSGoogle Scholar
  18. 18.
    Goncharov, Yu.P.: J. Phys. G, Nucl. Part. Phys. 35, 095006 (2008) CrossRefADSGoogle Scholar
  19. 19.
    Goncharov, Yu.P.: Nucl. Phys. A 812, 99 (2008) CrossRefADSGoogle Scholar
  20. 20.
    Goncharov, Yu.P.: Eur. Phys. J. A 46, 139 (2010) CrossRefADSMathSciNetGoogle Scholar
  21. 21.
    Goncharov, Yu.P., Firsova, N.E.: Int. J. Theor. Phys. 49, 1155 (2010) CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Ryder, L.H.: Quantum Field Theory. Cambridge Univ. Press, Cambridge (1985) MATHGoogle Scholar
  23. 23.
    Besse, A.L.: Einstein Manifolds. Springer, Berlin (1987) MATHGoogle Scholar
  24. 24.
    Barut, A.O., Raczka, R.: Theory of Group Representations and Applications. Polish Science, Warszawa (1977) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Theoretical Group, Experimental Physics DepartmentState Polytechnical UniversitySankt-PetersburgRussia

Personalised recommendations