International Journal of Theoretical Physics

, Volume 50, Issue 7, pp 2259–2267 | Cite as

Predicting Decoherence in Discrete Models

Article

Abstract

The general aim of this paper is to supply a method to decide whether a discrete system decoheres or not, and under what conditions decoherence occurs, with no need of appealing to computer simulations to obtain the time evolution of the reduced state. In particular, a lemma is presented as the core of the method.

Keywords

Decoherence Discrete spectrum Closed systems, open systems Spin-bath model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zeh, H.D.: Found. Phys. 1, 69 (1970) ADSCrossRefGoogle Scholar
  2. 2.
    Zeh, H.D.: Found. Phys. 3, 109 (1973) ADSCrossRefGoogle Scholar
  3. 3.
    Zurek, W.H.: Phys. Rev. D 26, 1862 (1982) MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    Zurek, W.H.: Prog. Theor. Phys. 89, 281 (1993) MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    Paz, J.P.: In: Heiss, D. (ed.) Lecture Notes in Physics, vol. 587. Springer, Heidelberg (2002) Google Scholar
  6. 6.
    Zurek, W.H.: Rev. Mod. Phys. 75, 715 (2003) MathSciNetADSMATHCrossRefGoogle Scholar
  7. 7.
    Diosi, L.: Phys. Lett. A 120, 377 (1987) MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    Diosi, L.: Phys. Rev. A 40, 1165 (1989) ADSCrossRefGoogle Scholar
  9. 9.
    Milburn, G.J.: Phys. Rev. A 44, 5401 (1991) MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    Penrose, R.: Shadows of the Mind. Oxford University Press, Oxford (1995) MATHGoogle Scholar
  11. 11.
    Casati, G., Chirikov, B.: Phys. Rev. Lett. 75, 349 (1995) ADSCrossRefGoogle Scholar
  12. 12.
    Casati, G., Chirikov, B.: Physica D 86, 220 (1995) MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Adler, S.: Quantum Theory as an Emergent Phenomenon. Cambridge University Press, Cambridge (2004) CrossRefGoogle Scholar
  14. 14.
    Bonifacio, R., Olivares, S., Tombesi, P., Vitali, D.: Phys. Rev. A 61, 053802 (2000) ADSCrossRefGoogle Scholar
  15. 15.
    Ford, G.W., O’Connell, R.F.: Phys. Lett. A 286, 87 (2001) MathSciNetADSMATHCrossRefGoogle Scholar
  16. 16.
    Frasca, M.: Phys. Lett. A 308, 135 (2003) MathSciNetADSMATHCrossRefGoogle Scholar
  17. 17.
    Sicardi Shifino, A.C., Abal, G., Siri, R., Romanelli, A., Donangelo, R.: arXiv:quant-ph/0308162 (2003)
  18. 18.
    Castagnino, M.: Int. J. Theor. Phys. 38, 1333 (1999) MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Castagnino, M., Laura, R.: Phys. Rev. A 62, 022107 (2000) ADSCrossRefGoogle Scholar
  20. 20.
    Castagnino, M., Laura, R.: Int. J. Theor. Phys. 39, 1767 (2000) MathSciNetCrossRefGoogle Scholar
  21. 21.
    Castagnino, M., Lombardi, O.: Int. J. Theor. Phys. 42, 1281 (2003) MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Castagnino, M.: Physica A 335, 511 (2004) MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    Castagnino, M., Ordoñez, A.: Int. J. Theor. Phys. 43, 695 (2004) MATHCrossRefGoogle Scholar
  24. 24.
    Castagnino, M.: Braz. J. Phys. 35, 375 (2005) CrossRefGoogle Scholar
  25. 25.
    Castagnino, M., Lombardi, O.: Phys. Rev. A 72, 012102 (2005) MathSciNetADSCrossRefGoogle Scholar
  26. 26.
    Castagnino, M., Lombardi, O.: Philos. Sci. 72, 764 (2005) MathSciNetCrossRefGoogle Scholar
  27. 27.
    Castagnino, M.: Phys. Lett. A 357, 97 (2006) MathSciNetADSMATHCrossRefGoogle Scholar
  28. 28.
    Castagnino, M., Gadella, M.: Found. Phys. 36, 920 (2006) MathSciNetADSMATHCrossRefGoogle Scholar
  29. 29.
    Castagnino, M., Lombardi, O.: Chaos Solitons Fractals 28, 879 (2006) MathSciNetADSMATHCrossRefGoogle Scholar
  30. 30.
    Castagnino, M., Fortin, S., Laura, R., Lombardi, O.: Class. Quantum Gravity 25, 154002 (2008) MathSciNetADSCrossRefGoogle Scholar
  31. 31.
    Castagnino, M., Fortin, S., Lombardi, O.: J. Phys. A, Math. Theor. 43, 065304 (2010) MathSciNetADSCrossRefGoogle Scholar
  32. 32.
    Castagnino, M., Fortin, S., Lombardi, O.: Mod. Phys. Lett. A 25, 1431 (2010) MathSciNetADSMATHCrossRefGoogle Scholar
  33. 33.
    Omnès, R.: arXiv:quant-ph/0106006 (2001)
  34. 34.
    Omnès, R.: Phys. Rev. A 65, 052119 (2002) ADSCrossRefGoogle Scholar
  35. 35.
    Benatti, F., Floreanini, R. (eds.): Lecture Notes in Physics, vol. 622. Springer, Berlin (2003) Google Scholar
  36. 36.
    Antoniou, I.E., Suchenecki, Z., Laura, R., Tasaki, S.: Physica A 241, 737 (1997) ADSCrossRefGoogle Scholar
  37. 37.
    Gaioli, F., García-Álvarez, E., Guevara, J.: Int. J. Theor. Phys. 36, 2167 (1997) MATHCrossRefGoogle Scholar
  38. 38.
    Bochner, S., Chandrasekharan, K.: Fourier Transforms. Princeton University Press, London (1949) MATHGoogle Scholar
  39. 39.
    Oran Brigham, E.: The Fast Fourier Transform and its Applications. Prentice-Hall, Englewood Cliffs (1988) Google Scholar
  40. 40.
    Press, W., Teukolsky, J., Vetterling, E., Flanery, B.: Numerical Recipes in Fortran. Cambridge University Press, Cambridge (1994) Google Scholar
  41. 41.
    Kauppinen, J., Partanen, J.: Fourier Transforms in Spectroscopy. Wiley-VCH, Berlin (2001) MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.CONICETBuenos AiresArgentina
  2. 2.IFIRUBABuenos AiresArgentina
  3. 3.FCENUBABuenos AiresArgentina

Personalised recommendations