International Journal of Theoretical Physics

, Volume 50, Issue 4, pp 991–996 | Cite as

\({\mathcal{PT}}\)-Symmetric Square Well-Perturbations and the Existence of Metric Operator

Article

Abstract

We consider \({\mathcal{PT}}\)-symmetric square well in more general setting: we impose \({\mathcal{PT}}\)-symmetric boundary conditions instead of Dirichlet ones. We investigate the existence and properties of a metric operator.

Keywords

\({\mathcal{PT}}\)-symmetry Perturbations Existence of metric operator 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

References

  1. 1.
    Znojil, M.: Phys. Lett. A 285, 7 (2001) MathSciNetADSMATHCrossRefGoogle Scholar
  2. 2.
    Bender, C.M.: Rep. Prog. Phys. 70, 947 (2007) MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    Mostafazadeh, A.: International Journal of Geometric Methods in Modern Physics (to appear) Google Scholar
  4. 4.
    Znojil, M., Lévai, G.: Mod. Phys. Lett. A 16, 2273 (2001) ADSMATHCrossRefGoogle Scholar
  5. 5.
    Krejčiřík, D., Bíla, H., Znojil, M.: J. Phys. A, Math. Gen. 39, 10143 (2006) ADSMATHCrossRefGoogle Scholar
  6. 6.
    Borisov, D., Krejčiřík, D.: Integral Equ. Oper. Theory 62, 489 (2008) MATHCrossRefGoogle Scholar
  7. 7.
    Krejčiřík, D., Siegl, P.: J. Phys. A, Math. Gen. 43, 485204 (2010) CrossRefGoogle Scholar
  8. 8.
    Kato, T.: Perturbation Theory for Linear Operators. Springer, Berlin (1966) MATHGoogle Scholar
  9. 9.
    Mostafazadeh, A., Batal, A.: J. Phys. A, Math. Gen. 37, 11645 (2004) MathSciNetADSMATHCrossRefGoogle Scholar
  10. 10.
    Bender, C.M., Tan, B.: J. Phys. A, Math. Gen. 39, 1945 (2006) MathSciNetADSMATHCrossRefGoogle Scholar
  11. 11.
    Attached animation Google Scholar
  12. 12.
    Mikhajlov, V.: Sov. Math. Dokl. 114, 981–984 (1962), translation from Dokl. Akad. Nauk SSSR 3, 851 (1962) Google Scholar
  13. 13.
    Naimark, M.: Linear Differential Operators. Part I: Elementary Theory of Linear Differential Operator. Frederick Ungar, New York (1967) Google Scholar
  14. 14.
    Naimark, M.: Linear Differential Operators. Part II: Linear Differential Operators in Hilbert Space. Frederick Ungar, New York (1968) MATHGoogle Scholar
  15. 15.
    Dunford, N., Schwartz, J.T.: Linear Operators, Part 3, Spectral Operators. Wiley-Interscience, New York (1971) Google Scholar
  16. 16.
    Mostafazadeh, A.: J. Math. Phys. 47, 072103 (2006) MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    Krejčiřík, D.: Journal of Physics A: Mathematical and General 41, 244012 (2008) Google Scholar
  18. 18.
    Blank, J., Exner, P., Havlíček, M.: Hilbert Space Operators in Quantum Physics. 2nd ed. Springer and American Institute of Physics, New York (2008) MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Theoretical PhysicsNuclear Physics Institute ASCRŘežCzech Republic
  2. 2.Faculty of Nuclear Sciences and Physical EngineeringCzech Technical University in PraguePragueCzech Republic
  3. 3.Laboratoire Astroparticule et CosmologieUniversité Paris Diderot-Paris 7Paris Cedex 13France

Personalised recommendations