Advertisement

International Journal of Theoretical Physics

, Volume 50, Issue 4, pp 991–996 | Cite as

\({\mathcal{PT}}\)-Symmetric Square Well-Perturbations and the Existence of Metric Operator

  • Petr Siegl
Article

Abstract

We consider \({\mathcal{PT}}\)-symmetric square well in more general setting: we impose \({\mathcal{PT}}\)-symmetric boundary conditions instead of Dirichlet ones. We investigate the existence and properties of a metric operator.

Keywords

\({\mathcal{PT}}\)-symmetry Perturbations Existence of metric operator 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

References

  1. 1.
    Znojil, M.: Phys. Lett. A 285, 7 (2001) MathSciNetADSzbMATHCrossRefGoogle Scholar
  2. 2.
    Bender, C.M.: Rep. Prog. Phys. 70, 947 (2007) MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    Mostafazadeh, A.: International Journal of Geometric Methods in Modern Physics (to appear) Google Scholar
  4. 4.
    Znojil, M., Lévai, G.: Mod. Phys. Lett. A 16, 2273 (2001) ADSzbMATHCrossRefGoogle Scholar
  5. 5.
    Krejčiřík, D., Bíla, H., Znojil, M.: J. Phys. A, Math. Gen. 39, 10143 (2006) ADSzbMATHCrossRefGoogle Scholar
  6. 6.
    Borisov, D., Krejčiřík, D.: Integral Equ. Oper. Theory 62, 489 (2008) zbMATHCrossRefGoogle Scholar
  7. 7.
    Krejčiřík, D., Siegl, P.: J. Phys. A, Math. Gen. 43, 485204 (2010) CrossRefGoogle Scholar
  8. 8.
    Kato, T.: Perturbation Theory for Linear Operators. Springer, Berlin (1966) zbMATHGoogle Scholar
  9. 9.
    Mostafazadeh, A., Batal, A.: J. Phys. A, Math. Gen. 37, 11645 (2004) MathSciNetADSzbMATHCrossRefGoogle Scholar
  10. 10.
    Bender, C.M., Tan, B.: J. Phys. A, Math. Gen. 39, 1945 (2006) MathSciNetADSzbMATHCrossRefGoogle Scholar
  11. 11.
    Attached animation Google Scholar
  12. 12.
    Mikhajlov, V.: Sov. Math. Dokl. 114, 981–984 (1962), translation from Dokl. Akad. Nauk SSSR 3, 851 (1962) Google Scholar
  13. 13.
    Naimark, M.: Linear Differential Operators. Part I: Elementary Theory of Linear Differential Operator. Frederick Ungar, New York (1967) Google Scholar
  14. 14.
    Naimark, M.: Linear Differential Operators. Part II: Linear Differential Operators in Hilbert Space. Frederick Ungar, New York (1968) zbMATHGoogle Scholar
  15. 15.
    Dunford, N., Schwartz, J.T.: Linear Operators, Part 3, Spectral Operators. Wiley-Interscience, New York (1971) Google Scholar
  16. 16.
    Mostafazadeh, A.: J. Math. Phys. 47, 072103 (2006) MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    Krejčiřík, D.: Journal of Physics A: Mathematical and General 41, 244012 (2008) Google Scholar
  18. 18.
    Blank, J., Exner, P., Havlíček, M.: Hilbert Space Operators in Quantum Physics. 2nd ed. Springer and American Institute of Physics, New York (2008) zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Theoretical PhysicsNuclear Physics Institute ASCRŘežCzech Republic
  2. 2.Faculty of Nuclear Sciences and Physical EngineeringCzech Technical University in PraguePragueCzech Republic
  3. 3.Laboratoire Astroparticule et CosmologieUniversité Paris Diderot-Paris 7Paris Cedex 13France

Personalised recommendations