International Journal of Theoretical Physics

, Volume 50, Issue 2, pp 607–617 | Cite as

On the Origin of the Inertial Force and Gravitation



In this paper we study the state of the art of the inertia theory, the gravity and the cosmology constant and their current open problems.


Gravitation theory Gravitational fields Mach inertia principle Particle acceleration Modified Newtonian Dynamics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amendola, L., Ganouji, R., Polarski, D., Tsujikawa, S.: Conditions for the cosmological viability of f(R) dark energy models. Phys. Rev. D 75, 083504 (2007) CrossRefADSGoogle Scholar
  2. 2.
    Arp, A., et al.: In: Edwards, M.R. (ed.) Pushing Gravity, New Perspectives on Le Sage’s Theory of Gravitation. Apeiron, Montreal (2002) Google Scholar
  3. 3.
    Assis, A.K.T.: On Mach’s principle. Found. Phys. Lett. 2, 301–318 (1989) CrossRefGoogle Scholar
  4. 4.
    Assis, A.K.T.: Relational Mechanics. Apeiron, Montreal (1999) Google Scholar
  5. 5.
    Brans, C., Dicke, R.H.: Mach’s principle and a relativistic theory of gravitation. Phys. Rev. 124(3), 925–935 (1961) MATHCrossRefMathSciNetADSGoogle Scholar
  6. 6.
    Cook, R.J.: Is gravitation a result of Mach’s inertial interaction? Nuovo Cimento B 35, 25–34 (1976) CrossRefADSGoogle Scholar
  7. 7.
    Davis, T.M., Linewater, C.H.: Expanding confusion: common misconceptions of cosmological horizons and the superluminal expansion of the universe. Publ. Astron. Soc. Aust. 21, 97–109 (2004) CrossRefADSGoogle Scholar
  8. 8.
    Dicke, R.H.: Experimental tests of Mach’s principle. Phys. Rev. Lett. 7, 359–360 (1961) MATHCrossRefADSGoogle Scholar
  9. 9.
    Dyson, F.W., Eddington, A.S., Davidson, C.: A determination of the deflection of light by the Sun’s gravitational field, from observations made at the total eclipse of 29 May 1919. Philos. Trans. R. Soc. Lond. A 220, 291–333 (1920) CrossRefADSGoogle Scholar
  10. 10.
    Einstein, A.: Zur Elektrodynamik bewegter Körper (On the electrodynamics of moving bodies). Ann. Phys. 17, 891–921 (1905) CrossRefMATHGoogle Scholar
  11. 11.
    Einstein, A.: Die Grundlage der allgemeinen Relativitäetstheorie (The foundation of the general theory of relativity). Ann. Phys. 49, 769–822 (1916) CrossRefMATHGoogle Scholar
  12. 12.
    Einstein, A.: Cosmological considerations on the general theory of relativity. In: Einstein, A., Lorentz, H.A., Weyl, H., Minkowski, H. (eds.) The Principle of Relativity, pp. 175–188. Dover, New York (1952) Google Scholar
  13. 13.
    El Naschie, M.S.: Average exceptional Lie and Coxeter group hierarchies with special reference to the standard model of high energy particle physics. Chaos Solitons Fractals 37(3), 662–668 (2008) CrossRefADSGoogle Scholar
  14. 14.
    Famaey, B., Binney, J.: Modified Newtonian dynamics in the Milky Way. Mon. Not. R. Astron. Soc. 363, 603–608 (2005) ADSGoogle Scholar
  15. 15.
    Felten, J.E.: Milgrom’s revision of Newton’s laws: dynamical and cosmological consequences. Astrophys. J. 286, 3–6 (1984) CrossRefADSGoogle Scholar
  16. 16.
    Foucault, L.: Démostration physique du mouvement de rotation de la terre au moyen du pendule. C. R. Acad. Sci. Paris 3, 135–138 (1851) Google Scholar
  17. 17.
    Foucault, L.: Physical demonstration of the rotation of the earth by means of the pendulum. J. Franklin Inst. 21, 350–353 (1851) CrossRefGoogle Scholar
  18. 18.
    Ghosh, A.: Origin of Inertia. Apeiron, Montreal (2000) Google Scholar
  19. 19.
    Giné, J.: On the origin of the inertia: the Modified Newtonian Dynamics theory. Chaos Solitons Fractals 41, 1651–1660 (2009) MATHCrossRefADSGoogle Scholar
  20. 20.
    Giné, J.: Is gravitational quantization another consequence of general relativity? Chaos Solitons Fractals 42, 1893–1899 (2009) CrossRefADSGoogle Scholar
  21. 21.
    Giné, J.: Modified Newtonian Dynamics (MOND) and the deceleration parameter. Preprint, Universitat de Lleida (2009) Google Scholar
  22. 22.
    Harrison, E.R.: Darkness at Night: A Riddle of the Universe. Harvard University Press, Cambridge (1987) Google Scholar
  23. 23.
    Iorio, L.: Long-range models of modified gravity and their agreement with solar system and double pulsar data. Proc. Sci. ISFTG 18, 1–17 (2009) Google Scholar
  24. 24.
    Lense, J., Thirring, H.: Über den Einfluss der Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie. Phys. Z. 19, 156–163 (1918) Google Scholar
  25. 25.
    Mach, E.: Die Mechanik in ihrer Entwicklung Historisch–Kritisch dargestell. Leipzig (1883) Google Scholar
  26. 26.
    Mashhoon, B.: Gravitoelectromagnetism: a brief review. In: Iorio, L. (ed.) The Measurement of Gravitomagnetism: A Challenging Enterprise, pp. 31–42. NOVA Science, New York (2005). gr-qc/0311030 Google Scholar
  27. 27.
    Milgrom, M.: A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. Astrophys. J. 270, 365–370 (1983) CrossRefADSGoogle Scholar
  28. 28.
    Nottale, L.: L’univers et la Lumiere. Flammarion, Paris (1994) Google Scholar
  29. 29.
    Nordtvedt, K.: Existence of the gravitomagnetic interaction. Int. J. Theor. Phys. 27, 1395–1404 (1988) MATHCrossRefGoogle Scholar
  30. 30.
    Pessa, E.: On Sakharov’s theory of gravitation. Gen. Relativ. Gravit. 9(10), 911–920 (1978) CrossRefMathSciNetADSGoogle Scholar
  31. 31.
    Raine, D.J.: Mach’s principle and space-time structure. Rep. Prog. Phys. 44, 1151–1195 (1981) CrossRefMathSciNetADSGoogle Scholar
  32. 32.
    Reinhardt, M.: Mach’s principle—a critical review. Z. Naturforsch. A 28, 529–537 (1973) ADSGoogle Scholar
  33. 33.
    Sakharov, A.D.: Vacuum quantum fluctuations in curved space and the theory of gravitation. Sov. Phys. Dokl. 12, 1040–1041 (1967) ADSGoogle Scholar
  34. 34.
    Sciama, D.W.: On the origin of the inertia. Mon. Not. R. Astron. Soc. 113, 34–42 (1953) MATHMathSciNetADSGoogle Scholar
  35. 35.
    Treder, H.J.: Remarks on anisotropy of inertia in an anisotropic cosmos. Astron. Nachr. 313(2), 65–67 (1992) CrossRefADSGoogle Scholar
  36. 36.
    Verlinde, E.: On the origin of gravity and the laws of Newton. arXiv:1001.0785
  37. 37.
    Weinberg, S.: The cosmological constant problem. Rev. Mod. Phys. 61, 1–23 (1989) MATHCrossRefMathSciNetADSGoogle Scholar
  38. 38.
    Whitrow, G.J.: The mass of the Universe. Nature 158, 165–166 (1946) CrossRefADSGoogle Scholar
  39. 39.
    Whitrow, G.J., Randall, D.G.: Expanding world–models characterized by a dimensionless invariant. Mon. Not. R. Astron. Soc. 111, 455–467 (1951) MATHMathSciNetADSGoogle Scholar
  40. 40.
    Woodward, J.F.: Gravity, inertia, and quantum vacuum zero point fields. Found. Phys. 31, 819–835 (2001) CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Departament de MatemàticaUniversitat de LleidaLleidaSpain

Personalised recommendations