Advertisement

International Journal of Theoretical Physics

, Volume 50, Issue 7, pp 2084–2093 | Cite as

Coherent States for the Asymmetric Penning Trap

  • Alonso Contreras-Astorga
  • David J. Fernández C.
Article

Abstract

After identifying the appropriate ladder operators, the coherent states for the asymmetric Penning trap are derived as common eigenstates of the annihilation operators. They will be compared with the ones obtained by acting the displacement operator onto the extremal state, as well as with those which minimize some Heisenberg uncertainty relationships. The time evolution and relevant mean values for some operators in these states will be evaluated.

Keywords

Coherent states Penning trap 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cohen-Tannodji, C., Diu, B., Laloë, F.: Quantum Mechanics. Wiley–Interscience, New York (1977) Google Scholar
  2. 2.
    Glauber, R.J.: Phys. Rev. Lett. 10, 84 (1963) MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    Glauber, R.J.: Phys. Rev. 131, 2766 (1963) MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    Zhang, W.M., Feng, D.H., Gilmore, R.: Rev. Mod. Phys. 62, 867 (1990) MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    Ali, S.T., Antoine, J.P., Gazeau, J.P.: Coherent States, Wavelets and Their Generalizations. Springer, New York (2000) MATHCrossRefGoogle Scholar
  6. 6.
    Dodonov, V.V.: J. Opt. B 4, R1 (2002) MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    Roy, B., Roy, P.: J. Opt. B 2, 65 (2000) ADSCrossRefGoogle Scholar
  8. 8.
    Quesne, C.: Ann. Phys. 293, 147 (2001) MathSciNetADSMATHCrossRefGoogle Scholar
  9. 9.
    Recamier, J., de León, P.G., Jáuregui, R., Frank, A., Castaños, O.: Int. J. Quant. Chem. 89, 494 (2002) CrossRefGoogle Scholar
  10. 10.
    Mielnik, B., Fernández, D.J.: J. Math. Phys. 30, 537 (1989) MathSciNetADSMATHCrossRefGoogle Scholar
  11. 11.
    Fernández, D.J.: Acta Phys. Pol. B 21, 589 (1990) Google Scholar
  12. 12.
    Cruz y Cruz, S., Mielnik, B.: Phys. Lett. A 352, 36 (2006) ADSMATHCrossRefGoogle Scholar
  13. 13.
    Fernández, D.J., Velázquez, M.: J. Phys. A 42, 085304 (2009) MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    Brown, L.S., Gabrielse, G.: Rev. Mod. Phys. 58, 233 (1986) ADSCrossRefGoogle Scholar
  15. 15.
    Genkin, M., Lindroth, E.: J. Phys. A 42, 385302 (2009) MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    Fernández, D.J., Nieto, L.M.: Phys. Lett. A 157, 315 (1991) ADSCrossRefGoogle Scholar
  17. 17.
    Fernández, D.J.: Nuovo Cimento B 107, 885 (1992) ADSCrossRefGoogle Scholar
  18. 18.
    Fernández, D.J., Bretón, N.: Europhys. Lett. 21, 147 (1993) ADSCrossRefGoogle Scholar
  19. 19.
    Nieto, M.M., Simmons, L.M. Jr.: Phys. Rev. D 20, 1321 (1979) MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    Nieto, M.M.: Phys. Rev. D 22, 391 (1980) MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    Cruz y Cruz, S., Kuru, S., Negro, J.: Phys. Lett. A 372, 1391 (2008) MathSciNetADSCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Alonso Contreras-Astorga
    • 1
  • David J. Fernández C.
    • 1
  1. 1.Departamento de FísicaCinvestavMéxico D.F.Mexico

Personalised recommendations