Advertisement

International Journal of Theoretical Physics

, Volume 49, Issue 12, pp 2950–2970 | Cite as

Interpreting Quantum Particles as Conceptual Entities

Article

Abstract

We elaborate an interpretation of quantum physics founded on the hypothesis that quantum particles are conceptual entities playing the role of communication vehicles between material entities composed of ordinary matter which function as memory structures for these quantum particles. We show in which way this new interpretation gives rise to a natural explanation for the quantum effects of interference and entanglement by analyzing how interference and entanglement emerge for the case of human concepts. We put forward a scheme to derive a metric based on similarity as a predecessor for the structure of ‘space, time, momentum, energy’ and ‘quantum particles interacting with ordinary matter’ underlying standard quantum physics, within the new interpretation, and making use of aspects of traditional quantum axiomatics. More specifically, we analyze how the effect of non-locality arises as a consequence of the confrontation of such an emerging metric type of structure and the remaining presence of the basic conceptual structure on the fundamental level, with the potential of being revealed in specific situations.

Keywords

Quantum physics Interpretation Conceptual entity Memory Interference Entanglement Emergent 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aerts, D.: Quantum particles as conceptual entities. A possible explanatory framework for quantum theory. Found. Sci. 14, 361–411 (2009) MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Aerts, D.: A potentiality and conceptuality interpretation of quantum physics. Philosophica 82 (2010, in press). Archive reference and link: http://uk.arxiv.org/abs/1005.3767
  3. 3.
    Aerts, D.: Quantum interference in cognition and double-slit graphical representations (in preparation) Google Scholar
  4. 4.
    Aerts, D.: Quantum structure in cognition. J. Math. Psychol. 53, 314–348 (2009) MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Aerts, D., Aerts, S., Gabora, L.: Experimental evidence for quantum structure in cognition. Lect. Notes Artif. Intell. 5494, 59–70 (2009) Google Scholar
  6. 6.
    Aerts, D., D’Hooghe, B.: Classical logical versus quantum conceptual thought: examples in economy, decision theory and concept theory. Lect. Notes Artif. Intell. 5494, 128–142 (2009) Google Scholar
  7. 7.
    Aerts, D.: Quantum interference and superposition in cognition: development of a theory for the disjunction of concepts. In: Aerts, D., D’Hooghe, B., Note, N. (eds.) Worldviews, Science and Us: Bridging Knowledge and Its Implications for Our Perspectives of the World. World Scientific, Singapore (2010) Google Scholar
  8. 8.
    Aerts, D.: General quantum modeling of combining concepts: a quantum field model in Fock space. Found. Sci. (2010) Google Scholar
  9. 9.
    Aerts, D., Czachor, M., D’Hooghe, B.: Towards a quantum evolutionary scheme: violating Bell’s inequalities in language. In: Evolutionary Epistemology, Language and Culture—A Non Adaptationist Systems Theoretical Approach. Springer, Dordrecht (2006) Google Scholar
  10. 10.
    Aerts, D., Gabora, L.: A theory of concepts and their combinations, I: The structure of the sets of contexts and properties. Kybernetes 34, 167–191 (2005) MATHCrossRefGoogle Scholar
  11. 11.
    Aerts, D., Gabora, L.: A theory of concepts and their combinations, II: A Hilbert space representation. Kybernetes 34, 192–221 (2005) MATHCrossRefGoogle Scholar
  12. 12.
    Aerts, D., Czachor, M.: Quantum aspects of semantic analysis and symbolic artificial intelligence. J. Phys. A, Math. Gen. 37, L123–L32 (2004) MATHCrossRefMathSciNetADSGoogle Scholar
  13. 13.
    Gabora, L., Aerts, D.: Contextualizing concepts using a mathematical generalization of the quantum formalism. J. Exp. Theor. Artif. Intel. 14, 327–358 (2002) MATHCrossRefGoogle Scholar
  14. 14.
    Aerts, D., Broekaert, J., Smets, S.: A quantum structure description of the liar paradox. Int. J. Theor. Phys. 38, 3231–3239 (1999) MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Aerts, D., Broekaert, J., Smets, S.: The liar paradox in a quantum mechanical perspective. Found. Sci. 4, 115–132 (1999) MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Aerts, D., Aerts, S.: Applications of quantum statistics in psychological studies of decision processes. Found. Sci. 1, 85–97 (1994) MathSciNetGoogle Scholar
  17. 17.
    Aerts, D., Aerts, S., Broekaert, J., Gabora, L.: The violation of Bell inequalities in the macroworld. Found. Phys. 30, 1387–1414 (2000) CrossRefMathSciNetGoogle Scholar
  18. 18.
    Aerts, D.: The stuff the world is made of: physics and reality. In: Einstein meets Magritte: An Interdisciplinary Reflection. Springer, Dordrecht (1999) Google Scholar
  19. 19.
    Aerts, D.: Foundations of quantum physics: a general realistic and operational approach. Int. J. Theor. Phys. 38, 289–358 (1999) MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Aerts, D.: The entity and modern physics: the creation-discovery view of reality. In: Interpreting Bodies: Classical and Quantum Objects in Modern Physics. Princeton University Press, Princeton (1998) Google Scholar
  21. 21.
    Aerts, D.: The hidden measurement formalism: what can be explained and where paradoxes remain. Int. J. Theor. Phys. 37, 291–304 (1998) MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Aerts, D.: Quantum structures: an attempt to explain their appearance in nature. Int. J. Theor. Phys. 34, 1165–1186 (1995) MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Aerts, D.: Quantum structures, separated physical entities and probability. Found. Phys. 24, 1227–1259 (1994) CrossRefMathSciNetADSGoogle Scholar
  24. 24.
    Aerts, D.: Quantum structures due to fluctuations of the measurement situations. Int. J. Theor. Phys. 32, 2207–2220 (1993) CrossRefMathSciNetGoogle Scholar
  25. 25.
    Aerts, D.: The construction of reality and its influence on the understanding of quantum structures. Int. J. Theor. Phys. 31, 1815–1837 (1992) CrossRefMathSciNetGoogle Scholar
  26. 26.
    Aerts, D.: A possible explanation for the probabilities of quantum mechanics. J. Math. Phys. 27, 202–210 (1986) CrossRefMathSciNetADSGoogle Scholar
  27. 27.
    Tonomura, A., Endo, J., Matsuda, T., Kawasaki, T., Ezawa, H.: Demonstration of single-electron buildup of an interference pattern. Am. J. Phys. 57, 117–120 (1989) CrossRefADSGoogle Scholar
  28. 28.
    Jönsson, C.: Elektroneninterferenzen an mehreren künstlich hergestellten Feinspalten. Z. Phys. 161, 454–474 (1961) CrossRefADSGoogle Scholar
  29. 29.
    Young, T.: On the theory of light and colours. Philos. Trans. R. Soc. 92, 12–48 (1802). Reprinted in part in H. Crew (ed) The Wave Theory of Light (1990). New York CrossRefGoogle Scholar
  30. 30.
    Feynman, R.: The Feynman Lectures on Physics: Volume 3. Addison-Wesley, Reading (1970) Google Scholar
  31. 31.
    Feynman, R.: The Character of Physical Law. MIT Press, Cambridge (1965) Google Scholar
  32. 32.
    Pearle, Ph.: How stands collapse I. J. Phys. A, Math. Theor. 40, 3189–3204 (2007) MATHCrossRefMathSciNetADSGoogle Scholar
  33. 33.
    Gisin, N.: Stochastic quantum dynamics and relativity. Helvet. Phys. Acta 62, 363–371 (1989) MathSciNetGoogle Scholar
  34. 34.
    Ghirardi, G.C., Rimini, A., Weber, T.: Unified dynamics for microscopic and macroscopic systems. Phys. Rev. D 34, 470–491 (1986) CrossRefMathSciNetADSGoogle Scholar
  35. 35.
    Zbinden, H., Brendel, J., Tittel, W., Gisin, N.: Experimental test of relativistic quantum state collapse with moving reference frames. J. Phys. A, Math. Theor. 34, 7103–7109 (2001) MATHCrossRefADSGoogle Scholar
  36. 36.
    Simon, C., Buzek, V., Gisin, N.: No-signaling condition and quantum dynamics. Phys. Rev. Lett. 87, 170405-2 (2001) ADSGoogle Scholar
  37. 37.
    Svetlichny, G.: Quantum formalism with state-collapse and superluminal communication. Found. Phys. 28, 131–155 (1998) CrossRefMathSciNetGoogle Scholar
  38. 38.
    Deutsch, D.: Quantum theory of probability and decisions. Proc. R. Soc. Lond. A455, 3129–3137 (1999) MathSciNetADSGoogle Scholar
  39. 39.
    DeWitt, B.S., Graham, N. (eds.): The Many-Worlds Interpretation of Quantum Mechanics. Princeton University Press, Princeton (1973) Google Scholar
  40. 40.
    Everett, H.: Relative state formulation of quantum mechanics. Rev. Mod. Phys. 29, 454–462 (1957) CrossRefMathSciNetADSGoogle Scholar
  41. 41.
    Aspect, A., Grangier, P., Roger, G.: Experimental tests of realistic local theories via Bell’s theorem. Phys. Rev. Lett. 47, 460–463 (1981) CrossRefADSGoogle Scholar
  42. 42.
    Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics 1, 195–200 (1964) Google Scholar
  43. 43.
    Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935) MATHCrossRefADSGoogle Scholar
  44. 44.
    Salart, D., Baas, A., Branciard, C., Gisin, N., Zbinden, H.: Testing the speed of ‘spooky action at a distance’. Nature 454, 861–864 (2008) CrossRefADSGoogle Scholar
  45. 45.
    Blei, D.M., Ng, A.N., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003) MATHCrossRefGoogle Scholar
  46. 46.
    Griffiths, T.L., Steyvers, M.: Prediction and semantic association. Adv. Neural Inf. Process. Syst. 15, 11–18 (2002) Google Scholar
  47. 47.
    Hofmann, T.: Probabilistic latent semantic analysis. In: Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Berkeley, California, 50-57 (1999) Google Scholar
  48. 48.
    Lund, K., Burgess, C.: Producing high-dimensional semantic spaces from lexical co-occurrence. Behav. Res. Meth., Instrum. Comput. 28, 203–208 (1995) Google Scholar
  49. 49.
    Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Indexing by latent semantic analysis. J. Am. Soc. Inform. Sci. 41, 391–407 (1990) CrossRefGoogle Scholar
  50. 50.
    Hampton, J.A.: Disjunction of natural concepts. Mem. Cogn. 16, 579–591 (1988) Google Scholar
  51. 51.
    Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880–884 (1969) CrossRefADSGoogle Scholar
  52. 52.
    Aerts, D.: Quantum axiomatics. In: Engesser, K., Gabbay, D., Lehmann, D. (eds.) Handbook of Quantum Logic, Quantum Structure and Quantum Computation. Elsevier, Amsterdam (2009) Google Scholar
  53. 53.
    Aerts, D., Aerts, S.: Towards a general operational and realistic framework for quantum mechanics and relativity theory. In: Elitzur, A.C., Dolev, S., Kolenda, N. (eds.): Quo Vadis Quantum Mechanics? Possible Developments in Quantum Theory in the 21st Century, pp. 153–208. Springer, New York (2004) Google Scholar
  54. 54.
    Aerts, D.: Being and change: foundations of a realistic operational formalism. In: Aerts, D., Czachor, M., Durt, T. (eds.) Probing the Structure of Quantum Mechanics: Nonlinearity, Nonlocality, Probability and Axiomatics. World Scientific, Singapore (2002) Google Scholar
  55. 55.
    Aerts, D., Colebunders, E., Van der Voorde, A., Van Steirteghem, B.: State property systems and closure spaces: a study of categorical equivalence. Int. J. Theor. Phys. 38, 359–385 (1999) MATHCrossRefGoogle Scholar
  56. 56.
    Piron, C.: Mécanique Quantique: Bases et Applications. Press Polytechnique de Lausanne, Lausanne (1990) MATHGoogle Scholar
  57. 57.
    Aerts, D.: Classical theories and non classical theories as a special case of a more general theory. J. Math. Phys. 24, 2441–2453 (1983) CrossRefMathSciNetADSGoogle Scholar
  58. 58.
    Aerts, D.: Description of many physical entities without the paradoxes encountered in quantum mechanics. Found. Phys. 12, 1131–1170 (1982) CrossRefMathSciNetADSGoogle Scholar
  59. 59.
    Aerts, D.: The one and the many: towards a unification of the quantum and classical description of one and many physical entities. Doctoral dissertation, Brussels Free University (1981) Google Scholar
  60. 60.
    Beltrametti, E., Cassinelli, G.: The Logic of Quantum Mechanics. Addison-Wesley, Reading (1981) MATHGoogle Scholar
  61. 61.
    Beltrametti, E., van Fraassen, B.C. (eds.): Current Issues in Quantum Logic. Plenum, New York (1980) Google Scholar
  62. 62.
    Foulis, D.J., Randall, C.H.: What are quantum logics and what ought they to be? In: Beltrametti, E., van Fraassen, B.C. (eds.) Current Issues in Quantum Logic. Plenum, New York (1980) Google Scholar
  63. 63.
    Hooker, D.J. (ed.): The Logico-Algebraic Approach to Quantum Mechanics. Springer, Dordrecht (1979) MATHGoogle Scholar
  64. 64.
    Piron, C.: Foundations of Quantum Physics. Benjamin, Elmsford (1976) MATHGoogle Scholar
  65. 65.
    Jauch, J.M.: Foundations of Quantum Mechanics. Addison-Wesley, Reading (1968) MATHGoogle Scholar
  66. 66.
    Varadarajan, V.S.: The Geometry of Quantum Theory. Springer, New York (1968) Google Scholar
  67. 67.
    Piron, C.: Axiomatique quantique. Helv. Phys. Acta 37, 439–468 (1964) MATHMathSciNetGoogle Scholar
  68. 68.
    Mittelstaedt, P.: Philosophische Probleme der Modernen Physik. Bibliographisches Institut, Mannheim (1963) Google Scholar
  69. 69.
    Mackey, G.: Mathematical Foundations of Quantum Mechanics. Benjamin, New York (1963) MATHGoogle Scholar
  70. 70.
    Mackey, G.: Quantum mechanics and Hilbert Space. Am. Math. Mon. 64, 45–57 (1957) CrossRefMathSciNetGoogle Scholar
  71. 71.
    Birkhoff, G., von Neumann, J.: The logic of quantum mechanics. Ann. Math. 37, 823–843 (1936) CrossRefGoogle Scholar
  72. 72.
    Tittel, W., Brendel, J., Gisin, B., Herzog, T., Zbinden, H., Gisin, N.: Experimental demonstration of quantum correlations over more than 10 km. Phys. Rev. A 57, 3229–3232 (1998) CrossRefADSGoogle Scholar
  73. 73.
    Rosch, E.: Natural categories. Cogn. Psychol. 4, 328–350 (1973) CrossRefGoogle Scholar
  74. 74.
    Rosch, E.: Cognitive representations of semantic categories. J. Exp. Psychol.: Gen. 104, 192–233 (1975) CrossRefGoogle Scholar
  75. 75.
    Chandler, D.: Semiotics: The Basics. Routledge, London (2002) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Center Leo Apostel for Interdisciplinary Studies and Departments of Mathematics and PsychologyVrije Universiteit BrusselBrusselsBelgium

Personalised recommendations