International Journal of Theoretical Physics

, Volume 49, Issue 12, pp 3005–3021 | Cite as

Correlated Knowledge: an Epistemic-Logic View on Quantum Entanglement

  • Alexandru Baltag
  • Sonja Smets
Open Access


In this paper we give a logical analysis of both classical and quantum correlations. We propose a new logical system to reason about the information carried by a complex system composed of several parts. Our formalism is based on an extension of epistemic logic with operators for “group knowledge” (the logic GEL), further extended with atomic sentences describing the results of “joint observations” (the logic LCK). As models we introduce correlation models, as a generalization of the standard representation of epistemic models as vector models. We give sound and complete axiomatizations for our logics, and we use this setting to investigate the relationship between the information carried by each of the parts of a complex system and the information carried by the whole system. In particular we distinguish between the “distributed information”, obtainable by simply pooling together all the information that can be separately observed in any of the parts, and “correlated information”, obtainable only by doing joint observations of the parts (and pooling together the results). Our formalism throws a new light on the difference between classical and quantum information and gives rise to an informational-logical characterization of the notion of “quantum entanglement”.


Logics for quantum information Quantum correlations Entanglement Correlation models Epistemic logic Correlated knowledge 


  1. 1.
    Aerts, D.: Description of compound physical systems and logical interaction of physical systems. In: Beltrametti, E.G., van Fraassen, B.C. (eds.) Current Issues on Quantum Logic, Ettore Majorana, International Science Series, Physical Sciences, vol. 8, pp. 381–405. Kluwer Academic, Dordrecht (1981) Google Scholar
  2. 2.
    Abramsky, S., Coecke, B.: A categorical semantics of quantum protocols. In: Proceedings of the 19th IEEE Conference on Logic in Computer Science (LiCS’04). Available at arXiv:quant-ph/0402130
  3. 3.
    Abramsky, S., Duncan, R.: A categorical quantum logic. Math. Struct. Comput. Sci. 469–489 (2006) Google Scholar
  4. 4.
    Baltag, A., Moss, L., van Ditmarsch, H.: Epistemic logic and information update. In: Handbook on the Philosophy of Information. Elsevier, Amsterdam (2008) Google Scholar
  5. 5.
    Baltag, A., Smets, S.: The logic of quantum programs. In: Selinger, P. (ed.) Proceedings of the 2nd International Workshop on Quantum Programming Languages (QPL2004). TUCS General Publication, vol. 33, pp. 39–56. Turku Center for Computer Science (2004). PHILSCI00001799 Google Scholar
  6. 6.
    Baltag, A., Smets, S.: Complete axiomatizations of quantum actions. Int. J. Theor. Phys. 44(12), 2267–2282 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Baltag, A., Smets, S.: LQP: the dynamic logic of quantum information. Math. Struct. Comput. Sci. 16(3), 491–525 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Baltag, A., Smets, S.: A dynamic-logical perspective on quantum behavior. Stud. Log. 89, 185–209 (2008) CrossRefMathSciNetGoogle Scholar
  9. 9.
    Baltag, A., Smets, S.: Correlated information: a logic for multi-partite quantum systems. In: Coecke, B., Panangaden, P., Selinger , P.(eds.), Pre-Proceedings of the 6th Workshop on Quantum Physics and Logic, pp. 4–14. Oxford, UK. Electronic Notes in Theoretical Computer Science (2009, forthcoming) Google Scholar
  10. 10.
    Barwise, J.: On the model theory of common knowledge. In: The Situation in Logic. CSLI Lecture Notes, pp. 201–220. Center for the Study of Language and Information (1989) Google Scholar
  11. 11.
    Barwise, J., Perry, J.: Situations and Attitudes. MIT Press, Cambridge (1983) Google Scholar
  12. 12.
    van Benthem, J.: Exploring Logical Dynamics. CSLI Publications, Stanford (1996) zbMATHGoogle Scholar
  13. 13.
    van Benthem, J., Martinez, M.: The stories of logic and information. In: Handbook of the Philosophy of Information. Elsevier, Amsterdam (2008). Available at Google Scholar
  14. 14.
    van Benthem, J.: Information as correlation vs. Information as range: a proposal for identifying and merging two basic logical traditions. In: Moss, L. (ed.) In Memory of Jon Barwise (in press). Available at
  15. 15.
    Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge Tracts in Theoretical Computer Science, vol. 53. Cambridge University Press, Cambridge (2001) zbMATHGoogle Scholar
  16. 16.
    Coecke, B.: The logic of entanglement. Research Report, March 2004. arXiv:quant-ph/0402014
  17. 17.
    Coecke, B., Edwards, B.: Toy quantum categories. In: Proceedings of Quantum Physics and Logic 2008. Electronic Notes in theoretical Computer Science (to appear).
  18. 18.
    Chiara, M.L. Dalla, Giuntini, R., Leporini, R.: Quantum computational logics. A survey. In: Hendricks, V., Malinowski, J. (eds.) Trends in Logic. 50 Years of Studia Logica, pp. 229–271. Kluwer, Dordrecht (2003) Google Scholar
  19. 19.
    Devlin, K.: Logic and Information. Cambridge University Press, Cambridge (1991) zbMATHGoogle Scholar
  20. 20.
    Gudder, S.: Quantum computational logic. Int. J. Theor. Phys. 42(1), 39–47 (2003) zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Fagin, R., Halpern, J., Moses, Y., Vardi, M.: Reasoning about Knowledge. MIT Press, Cambridge (1995) zbMATHGoogle Scholar
  22. 22.
    Halpern, J.Y., Moses, Y.: Knowledge and common knowledge in a distributed environment. J. ACM 37(3), 549–587 (1990) zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Valckenborgh, F.: Compound systems in quantum axiomatics. Doctoral thesis, Vrije Universiteit Brussel (2001) Google Scholar

Copyright information

© The Author(s) 2010

Authors and Affiliations

  1. 1.Computing LaboratoryOxford UniversityOxfordUK
  2. 2.Dept. of Artificial Intelligence and Dept. of PhilosophyUniversity of GroningenGroningenNetherlands
  3. 3.IEGOxford UniversityOxfordUK

Personalised recommendations