Advertisement

International Journal of Theoretical Physics

, Volume 49, Issue 8, pp 1699–1705 | Cite as

Dirac Oscillator in Noncommutative Phase Space

  • Shaohong Cai
  • Tao Jing
  • Guangjie Guo
  • Rukun Zhang
Article

Abstract

We study the Dirac oscillators in a noncommutative phase space. The results show that the energy gap of Dirac oscillator was changed by noncommutative effect. In addition, we obtain the non-relativistic limit of the energy spectrum.

Keywords

Noncommutative phase space Dirac oscillator Exact solutions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Connes, A., Douglas, M.R., Schwarz, A.: J. High Energy Phys. 9802, 003 (1998). arXiv:hep-th/9808042 CrossRefMathSciNetADSGoogle Scholar
  2. 2.
    Seiberg, N., Witten, E.: J. High Energy Phys. 9909, 032 (1999). arXiv:hep-th/9908142 CrossRefMathSciNetADSGoogle Scholar
  3. 3.
    Susskind, L.: arXiv:hep-th/0101029
  4. 4.
    Mezincescu, L.: arXiv:hep-th/0007046
  5. 5.
    Nair, V.P.: Phys. Lett. B 505, 249 (2001). arXiv:hep-th/0008027 zbMATHCrossRefMathSciNetADSGoogle Scholar
  6. 6.
    Chaichian, M., et al.: Phys. Rev. Lett. 86, 2716 (2001). arXiv:hep-th/0010175 CrossRefADSGoogle Scholar
  7. 7.
    Jellal, A.: Orbital magnetism of two-dimension noncommutative confined system. arXiv:hep-th/0105303
  8. 8.
    Smailagic, A., Spallucci, E.: Phys. Rev. D 65, 107701 (2002) CrossRefMathSciNetADSGoogle Scholar
  9. 9.
    Smailagic, A., Spallucci, E.: J. Phys. A 35, L363 (2002) zbMATHCrossRefMathSciNetADSGoogle Scholar
  10. 10.
    Djemaï, A.E.F., Smaïl, H.: On quantum mechanics on noncommutative quantum phase space. Commun. Theor. Phys. 41(6), 837–844 (2004). arXiv:hep-th/0309006 zbMATHMathSciNetGoogle Scholar
  11. 11.
    Itô, D., Mori, K., Carriere, E.: Nuovo Cimento A 51, 1119 (1967) CrossRefADSGoogle Scholar
  12. 12.
    Beckers, J., Debergha, N., Nikitin, A.G.: J. Math. Phys. 33, 3387 (1992) CrossRefMathSciNetADSGoogle Scholar
  13. 13.
    Bednar, M., Ndimubandi, J., Nikitin, A.G.: Can. J. Phys. 75, 283 (1997) CrossRefADSGoogle Scholar
  14. 14.
    Nedjadi, Y., Barrett, R.C.: J. Phys. A: Math. Gen. 27, 4301 (1994) zbMATHCrossRefMathSciNetADSGoogle Scholar
  15. 15.
    Nedjadi, Y., Barrett, R.C.: J. Phys. A: Math. Gen. 31, 6717 (1998) zbMATHCrossRefMathSciNetADSGoogle Scholar
  16. 16.
    Kulikov, D.A., Tutik, R.S., Yaroshenko, A.P.: Mod. Phys. Lett. A 26, 12 (2004) Google Scholar
  17. 17.
    Boumali, A., Chetouani, L.: Phys. Lett. A 346, 261 (2005) CrossRefMathSciNetADSGoogle Scholar
  18. 18.
    Boumali, A.: J. Math. Phys. 49, 022302 (2008) CrossRefMathSciNetADSGoogle Scholar
  19. 19.
    Mirza, B., Mohadesi, M.: Commun. Theor. Phys. 42, 664 (2004) (Beijing, China) zbMATHMathSciNetGoogle Scholar
  20. 20.
    Falek, M., Merad, M.: Commun. Theor. Phys. 50, 587 (2008) (Beijing, China) CrossRefMathSciNetGoogle Scholar
  21. 21.
    Zhang, J.-Z.: Phys. Lett. B 584, 204 (2004) CrossRefMathSciNetADSGoogle Scholar
  22. 22.
    Bertolami, O., Rosa, J.G., de Aragao, C.M.L., Castorina, P., Zappalà, D.: Phys. Rev. D 72, 025010 (2005) CrossRefMathSciNetADSGoogle Scholar
  23. 23.
    Chaichian, M., Sheikh-Jabbari, M.M., Tureanu, A.: Phys. Rev. Lett. 86, 2716 (2001) CrossRefADSGoogle Scholar
  24. 24.
    Carroll, S.M., Harvey, J.A., Kostelecky, V.A., Lane, C.D., Okamoto, T.: Phys. Rev. Lett. 87, 141601 (2001) CrossRefMathSciNetADSGoogle Scholar
  25. 25.
    Hagen, C.R.: Phys. Rev. Lett. 64, 503 (1990) zbMATHCrossRefMathSciNetADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Shaohong Cai
    • 1
  • Tao Jing
    • 2
  • Guangjie Guo
    • 2
  • Rukun Zhang
    • 2
  1. 1.Guizhou College of Finance and EconomicsGuiyang GuizhouChina
  2. 2.Department of PhysicsGuizhou UniversityGuiyang GuizhouChina

Personalised recommendations