International Journal of Theoretical Physics

, Volume 49, Issue 5, pp 1155–1173 | Cite as

Classical Model of Confinement

Article

Abstract

The confinement mechanism proposed earlier and then applied successfully to meson spectroscopy by one of the authors is interpreted in classical terms. For this aim the unique solution of the Maxwell equations, an analog of the corresponding unique solution of the SU(3)-Yang-Mills equations describing linear confinement in quantum chromodynamics, is used. Motion of a charged particle is studied in the field representing magnetic part of the mentioned solution and it is shown that one deals with the full classical confinement of the charged particle in such a field: under any initial conditions the particle motion is accomplished within a finite region of space so that the particle trajectory is near magnetic field lines while the latter are compact manifolds (circles). An asymptotical expansion for the trajectory form in the strong field limit is adduced. The possible application of the obtained results in thermonuclear plasma physics is also shortly outlined.

Keywords

Quantum chromodynamics Confinement Thermonuclear plasma physics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Goncharov, Yu.P.: Mod. Phys. Lett. A 16, 557 (2001) CrossRefMathSciNetGoogle Scholar
  2. 2.
    Goncharov, Yu.P.: Phys. Lett. B 617, 67 (2005) CrossRefADSGoogle Scholar
  3. 3.
    Goncharov, Yu.P.: In: Kreitler, P.V. (ed.) New Developments in Black Hole Research, pp. 67–121. Nova Science Publishers, New York (2006). Chap. 3, hep-th/0512099 Google Scholar
  4. 4.
    Goncharov, Yu.P.: Europhys. Lett. 62, 684 (2003) CrossRefADSGoogle Scholar
  5. 5.
    Goncharov, Yu.P., Choban, E.A.: Mod. Phys. Lett. A 18, 1661 (2003) MATHCrossRefADSGoogle Scholar
  6. 6.
    Goncharov, Yu.P., Bytsenko, A.A.: Phys. Lett. B 602, 86 (2004) CrossRefADSGoogle Scholar
  7. 7.
    Goncharov, Yu.P.: Nucl. Phys. A 808, 73 (2008) CrossRefADSGoogle Scholar
  8. 8.
    Goncharov, Yu.P.: Phys. Lett. B 641, 237 (2006) CrossRefADSGoogle Scholar
  9. 9.
    Goncharov, Yu.P.: Phys. Lett. B 652, 310 (2007) CrossRefADSGoogle Scholar
  10. 10.
    Goncharov, Yu.P.: Mod. Phys. Lett. A 22, 2273 (2007) MATHCrossRefADSGoogle Scholar
  11. 11.
    Goncharov, Yu.P.: J. Phys. G, Nucl. Part. Phys. 35, 095006 (2008) CrossRefADSGoogle Scholar
  12. 12.
    Goncharov, Yu.P.: Nucl. Phys. A 812, 99 (2008) CrossRefADSGoogle Scholar
  13. 13.
    Ryder, L.H.: Quantum Field Theory. Cambridge University Press, Cambridge (1985) MATHGoogle Scholar
  14. 14.
    Wilson, K.: Phys. Rev. D 10, 2445 (1974) CrossRefADSGoogle Scholar
  15. 15.
    Bander, M.: Phys. Rep. 75, 205 (1981) CrossRefADSGoogle Scholar
  16. 16.
    Landau, L.D., Lifshits, E.M.: Field Theory. Nauka, Moscow (1988) MATHGoogle Scholar
  17. 17.
    Glukhikh, V.A., Belyakov, V.A., Mineev, A.B.: Physical and Technical Foundations of the Controlled Thermonuclear Fusion. Sankt-Petersburg State Polytechnical University Press, Sankt-Petersburg (2006) Google Scholar
  18. 18.
    Postnikov, M.M.: Smooth Manifolds. Nauka, Moscow (1987) MATHGoogle Scholar
  19. 19.
    Besse, A.L.: Einstein Manifolds. Springer, Berlin (1987) MATHGoogle Scholar
  20. 20.
    Postnikov, M.M.: Riemannian Geometry. Factorial, Moscow (1998) Google Scholar
  21. 21.
    Cartan, H.: Calcul Différentiel. Formes Différentiel. Hermann, Paris (1967) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Theoretical Group, Experimental Physics DepartmentState Polytechnical UniversitySankt-PetersburgRussia
  2. 2.Institute of the Mechanical Engineering ProblemsRussian Academy of SciencesSankt-PetersburgRussia

Personalised recommendations