International Journal of Theoretical Physics

, Volume 49, Issue 5, pp 988–1003

Time and Spacetime: The Crystallizing Block Universe

Article

Abstract

The nature of the future is completely different from the nature of the past. When quantum effects are significant, the future shows all the signs of quantum weirdness, including duality, uncertainty, and entanglement. With the passage of time, after the time-irreversible process of state-vector reduction has taken place, the past emerges, with the previous quantum uncertainty replaced by the classical certainty of definite particle identities and states. The present time is where this transition largely takes place, but the process does not take place uniformly: evidence from delayed choice and related experiments shows that isolated patches of quantum indeterminacy remain, and that their transition from probability to certainty only takes place later. Thus, when quantum effects are significant, the picture of a classical Evolving Block Universe (‘EBU’) cedes place to one of a Crystallizing Block Universe (‘CBU’), which reflects this quantum transition from indeterminacy to certainty, while nevertheless resembling the EBU on large enough scales.

Keywords

Space-time Quantum uncertainty Arrow of time Block universe 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mellor, D.H.: Real Time II. Routledge, London (1998) CrossRefGoogle Scholar
  2. 2.
    Savitt, S.: Being and becoming in modern physics. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy. Springer, Berlin (2002). See http://plato.stanford.edu/archives/spr2002/entries/spacetime-bebecome/ Google Scholar
  3. 3.
    Davies, P.C.W.: That mysterious flow. Sci. Am. 287, 40 (2002) CrossRefGoogle Scholar
  4. 4.
    Price, H.: Time’s Arrow and Archimedes’ Point. Oxford University Press, New York (1996) Google Scholar
  5. 5.
    Barbour, J.B.: The End of Time: The Next Revolution in Physics. Oxford University Press, Oxford (1999) Google Scholar
  6. 6.
    Ellis, G.F.R.: Physics in the real universe: time and spacetime. Gen. Relativ. Gravit. 38, 1797–1824 (2006). http://arxiv.org/abs/gr-qc/0605049 MATHCrossRefADSGoogle Scholar
  7. 7.
    Aharanov, Y., Rohrlich, D.: Quantum Paradoxes. Quantum Theory for the Perplexed. Wiley-VCH, Weinheim (2005) CrossRefGoogle Scholar
  8. 8.
    Greenstein, G., Zajonc, A.G.: The Quantum Challenge: Modern Research on the Foundations of Quantum Mechanics. Jones & Bartlett, Sudbury (2006) Google Scholar
  9. 9.
    Broad, C.D.: Scientific Thought. Harcourt Brace, New York (1923). For table of contents and some chapters, see http://www.ditext.com/broad/st/st-con.html MATHGoogle Scholar
  10. 10.
    London, F., Bauer, E.: The theory of observation in quantum mechanics. In: Wheeler, J.A., Zurek, W.H. (eds.) Quantum Theory and Measurement, pp. 217–259. Princeton University Press, Princeton (1983) Google Scholar
  11. 11.
    Feynman, R.: QED: The Strange Theory of Light and Matter. Princeton University Press, Princeton (1985) Google Scholar
  12. 12.
    Penrose, R.: The Emperor’s New Mind. Oxford University Press, Oxford (1989) Google Scholar
  13. 13.
    Morrison, M.A.: Understanding Quantum Physics: A User’s Manual. Prentice Hall International, Englewood Cliffs (1990) Google Scholar
  14. 14.
    Leggett, A.J.: Reflections on the quantum measurement paradox. In: Hiley, B.J., Peat, F.D. (eds.) Quantum Implications: Essays in Honour of David Bohm, pp. 85–104. Routledge, London (1991) Google Scholar
  15. 15.
    Rae, A.: Quantum Physics: Illusion or Reality? Cambridge University Press, Cambridge (1994) Google Scholar
  16. 16.
    Isham, C.J.: Lectures on Quantum Theory: Mathematical and Structural Foundations. Imperial College Press, London (1997) Google Scholar
  17. 17.
    Breur, H.-P., Petruccione, F.: The Theory of Open Quantum Systems. Clarendon Press, Oxford (2006) Google Scholar
  18. 18.
    Kiefer, C.: On the interpretation of quantum theory—from Copenhagen to the present day. arXiv:quant-ph/0210152v1 (2002)
  19. 19.
    Wheeler, J.A.: The past and the delayed-choice double-slit experiment. In: Marlow, A.R. (ed.) Mathematical Foundations of Quantum Theory, pp. 9–48. Academic Press, San Diego (1978) Google Scholar
  20. 20.
    Jacques, V., Wu, E., Grosshans, F., Treussart, F., Grangier, P., Aspect, A., Roch, J.-F.: Experimental realization of Wheeler’s delayed-choice GedankenExperiment. Science 315, 5814 (2007). arXiv:quant-ph/0610241v1 CrossRefGoogle Scholar
  21. 21.
    Scully, M.O., Drühl, K.: Quantum eraser: a proposed photon correlation experiment concerning observation and ‘delayed choice’ in quantum mechanics. Phys. Rev. A 25, 2208 (1982) CrossRefADSGoogle Scholar
  22. 22.
    Aharonov, Y., Zubairy, M.S.: Time and the quantum: erasing the past and impacting the future. Science 307, 875–879 (2005) CrossRefMathSciNetADSGoogle Scholar
  23. 23.
    Cramer, J.G.: The quantum eraser. http://www.npl.washington.edu/AV/altvw90.html
  24. 24.
    Rhodes, R.: Commentary on a delayed choice quantum eraser. http://www.bottomlayer.com/bottom/kim-scully/kim-scully-web.htm
  25. 25.
    Kim, Y.-H., Yu, R., Kulik, S.P., Shih, Y.H., Scully, M.O.: A delayed choice quantum eraser. Phys. Rev. Lett. 84, 1–5 (2000). arXiv:quant-ph/9903047v1 CrossRefADSGoogle Scholar
  26. 26.
    Aharonov, Y., Albert, D.Z., Vaidman, L.: Measurement process in relativistic quantum theory. Phys. Rev. D 34, 1805–1813 (1986) CrossRefMathSciNetADSGoogle Scholar
  27. 27.
    Hosten, O., Kwiat, P.: Observation of the spin Hall effect of light via weak measurements. Science 319, 787 (2008) CrossRefADSGoogle Scholar
  28. 28.
    Dixon, P.B., Starling, D.J., Jordan, A.N., Howell, J.C.: Ultrasensitive beam deflection measurement via interferometric weak value amplification. Phys. Rev. Lett. 102, 173601 (2009) CrossRefADSGoogle Scholar
  29. 29.
    Wheeler, J.A., Feynman, R.P.: Interaction with the absorber as the mechanism of radiation. Rev. Mod. Phys. 17, 157–181 (1945) CrossRefADSGoogle Scholar
  30. 30.
    Wheeler, J.A., Feynman, R.P.: Classical electrodynamics in terms of direct interparticle action. Rev. Mod. Phys. 21, 425–433 (1949) MATHCrossRefMathSciNetADSGoogle Scholar
  31. 31.
    Feynman, R.P.: Space-time approach to quantum electrodynamics. Phys. Rev. 76, 769–789 (1949) MATHCrossRefMathSciNetADSGoogle Scholar
  32. 32.
    Cramer, J.G.: The transactional interpretation of quantum mechanics. Rev. Mod. Phys. 58, 647–688 (1986) CrossRefMathSciNetADSGoogle Scholar
  33. 33.
    Cramer, J.G.: An overview of the transactional interpretation of quantum mechanics. Int. J. Theor. Phys. 27, 227 (1988) CrossRefMathSciNetGoogle Scholar
  34. 34.
    Aharonov, Y., Bergmann, P.G., Liebowitz, J.L.: Time symmetry in the quantum process of measurement. Phys. Rev. 134, B1410–B1416 (1964) CrossRefADSGoogle Scholar
  35. 35.
    Shimony, A.: An analysis of ensembles that are both pre- and post-selected. Found. Phys. 35, 215–232 (2005) MATHCrossRefMathSciNetADSGoogle Scholar
  36. 36.
    Aharanov, Y., Gruss, E.A.: Two-time interpretation of quantum mechanics. arXiv:quant-ph/0507269 (2005)
  37. 37.
    Davidon, W.C.: Quantum physics of single systems. Nuovo Cimento B 36, 34–39 (1976) CrossRefADSGoogle Scholar
  38. 38.
    Davies, PCW: Time dependent quantum weak values: decay law for post-selected states. arXiv:0807.1357 (2008)
  39. 39.
    Davies, P.: The Goldilocks Enigma: Why Is the Universe Just Right for Life? Allen Lane, London (2006) Google Scholar
  40. 40.
    Ellis, G.F.R.: On the nature of causation in complex systems. Trans. R. Soc. South Afr. 63, 69–84 (2008) Google Scholar
  41. 41.
    Zurek, W.: Quantum Darwinism and envariance. In: Barrow, J., Davies, P.C.W., Harper, C. (eds.) Science and Ultimate Reality: Quantum Theory, Cosmology, and Complexity, pp. 121–134. Cambridge University Press, Cambridge (2004) Google Scholar
  42. 42.
    Davies, P.C.W.: The Physics of Time Asymmetry. Surrey University Press, London (1974) Google Scholar
  43. 43.
    Zeh, H.D.: The Physical Basis of the Direction of Time. Springer, Berlin (1992) MATHGoogle Scholar
  44. 44.
    Ellis, G.F.R., Sciama, D.W.: Global and non-global problems in cosmology. In: O’Raifeartaigh, L. (ed.) General Relativity (A Synge Festschrift), pp. 35–59. Oxford University Press, London (1972) Google Scholar
  45. 45.
    Ellis, G.F.R.: Cosmology and local physics. New Astron. Rev. 46, 645–658 (2002). gr-qc/0102017 CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.University of Cape TownCapeSouth Africa
  2. 2.Princeton UniversityPrincetonUSA

Personalised recommendations