Advertisement

Growing Classical and Quantum Entropies in the Early Universe

  • J. S. Ardenghi
  • M. A. Castagnino
Article
  • 51 Downloads

Abstract

Following the idea that the global and local arrow of time has a cosmological origin, we define an entropy in the classical and in the quantum periods of the universe evolution. For the quantum period a semi-classical approach is adopted, modelling the universe with Wheeler-De Witt equation and using WKB. By applying the self-induced decoherence to the state of the universe it is proved that the quantum universe becomes a classical one. This allows us to define a conditional entropy which, in our simplified model, is proportional to e 2γ t where γ is the dumping factor associated with the interaction potential of the scalar fields. Finally we find both Gibbs and thermodynamical entropy of the universe based in the conditional entropy.

Entropy Quantum universe Decoherence 

References

  1. 1.
    Adler, S.: Quantum Theory as an Emergent Phenomenon. Cambridge University Press, Cambridge (2004) Google Scholar
  2. 2.
    Aiello, M., Castagnino, M., Lombardi, O.: Found. Phys. 38, 256–292 (2008) CrossRefMathSciNetADSGoogle Scholar
  3. 3.
    Antoniou, I., Suchanecki, Z., Laura, R., Tasaki, S.: Physica A 241, 737 (1997) CrossRefADSGoogle Scholar
  4. 4.
    Ballentine, L.: Quantum Mechanics. World Scientific, Singapore (1998) zbMATHGoogle Scholar
  5. 5.
    Barvinsky, A.O., et al.: Nucl. Phys. B 551, 374 (1999) CrossRefADSGoogle Scholar
  6. 6.
    Belanger, A., Thomas, G.F.: Can. J. Math. 42, 410 (1990) zbMATHMathSciNetGoogle Scholar
  7. 7.
    Birrell, N., Davies, P.: Quantum Field Theory in Curves Space. Cambridge University Press, Cambridge (1982) Google Scholar
  8. 8.
    Bohm, A.: Quantum Mechanics, Foundations and Applications. Springer, Berlin (1986) zbMATHGoogle Scholar
  9. 9.
    Bonifacio, R., et al.: Phys. Rev. A 61, 053802 (2000) CrossRefADSGoogle Scholar
  10. 10.
    Casati, G., Chirikov, B.: Phys. Rev. Lett. 75, 349 (1995) CrossRefADSGoogle Scholar
  11. 11.
    Casati, G., Chirikov, B.: Phys. Rev. D 86, 220 (1995) zbMATHMathSciNetGoogle Scholar
  12. 12.
    Casati, G., Prosen, T.: Phys. Rev. A 72, 032111 (2005) CrossRefMathSciNetADSGoogle Scholar
  13. 13.
    Castagnino, M.: Physica A 335, 511 (2004) CrossRefMathSciNetADSGoogle Scholar
  14. 14.
    Castagnino, M.: Phys. Lett. A 357, 97 (2006) zbMATHCrossRefMathSciNetADSGoogle Scholar
  15. 15.
    Castagnino, M., Gadella, M.: Found. Phys. 36, 920 (2006) zbMATHCrossRefMathSciNetADSGoogle Scholar
  16. 16.
    Castagnino, M., Gunzig, E.: Int. J. Theor. Phys. 36, 2545 (1997) zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Castagnino, M., Laura, R.: Phys. Rev. A 56, 108 (1997) CrossRefMathSciNetADSGoogle Scholar
  18. 18.
    Castagnino, M., Laura, R.: Int. J. Theor. Phys. 39, 1737 (2000) zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Castagnino, M., Laura, R.: Phys. Rev. A 62, 022107 (2000) CrossRefADSGoogle Scholar
  20. 20.
    Castagnino, M., Lombardi, O.: Stud. Hist. Phil. Mod. Phys. 35, 73 (2004) CrossRefMathSciNetGoogle Scholar
  21. 21.
    Castagnino, M., Lombardi, O.: J. Phys. A (Math. and Gen.) 37, 4445–4463 (2004) zbMATHCrossRefMathSciNetADSGoogle Scholar
  22. 22.
    Castagnino, M., Lombardi, O.: Decoherence time in self induced decoherence. arXiv:quant-ph/0502087 (2005)
  23. 23.
    Castagnino, M., Lombardi, O.X.: In: Reimer, A. (ed.) Spacetime Physics Research Trends. Horizons in World Physics. Nova Science, New York (2005) Google Scholar
  24. 24.
    Castagnino, M., Lombardi, O.: Phys. Rev. A 72, 012102 (2005) CrossRefMathSciNetADSGoogle Scholar
  25. 25.
    Castagnino, M., Lombardi, O.: Chaos, Solitons Fract. 28, 879 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Castagnino, M., Lombardi, O.: Phil. Sci. 74, 968 (2007) CrossRefMathSciNetGoogle Scholar
  27. 27.
    Castagnino, M., Lombardi, O.: Physica A 388, 247 (2009) CrossRefADSGoogle Scholar
  28. 28.
    Castagnino, M., Ordoñez, A.: Int. J. Theor. Phys. 43, 695–719 (2004) zbMATHCrossRefGoogle Scholar
  29. 29.
    Castagnino, M., Fortin, S., Laura, R., Lombardi, O.: Class. Quantum Gravity 25, 154002 (2008) CrossRefMathSciNetADSGoogle Scholar
  30. 30.
    Castagnino, M., Lara, L., Lombardi, O.: Int. J. Theor. Phys. 42, 2487–2504 (2003) zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Castagnino, M., Lara, L., Lombardi, O.: Class. Quantum Gravity 20, 369–391 (2003) zbMATHCrossRefMathSciNetADSGoogle Scholar
  32. 32.
    Castagnino, M., Laura, R., Liotta, R., Id Bettan, R.: J. Phys. A (Math. Gen.) 35, 6055 (2002) zbMATHCrossRefADSGoogle Scholar
  33. 33.
    Castagnino, M., Lombardi, O., Lara, L.: Found. Phys. 33, 877–912 (2003) CrossRefMathSciNetGoogle Scholar
  34. 34.
    Dioisi, L.: Phys. Rev. Lett. A 120, 377 (1987) ADSGoogle Scholar
  35. 35.
    Dioisi, L.: Phys. Rev. A 40, 1165 (1989) CrossRefADSGoogle Scholar
  36. 36.
    Ehrenfest, P., Ehrenfest, T.: The Conceptual Foundations of the Statistical Approach in Mechanics. Cornell University Press, Ithaca (1959). (original 1912) zbMATHGoogle Scholar
  37. 37.
    Ford, G., O’Connel, R.: Phys. Rev. Lett. A 286, 87 (2001) zbMATHADSGoogle Scholar
  38. 38.
    Frasca, M.: Phys. Lett. A 308, 135 (2003) zbMATHCrossRefMathSciNetADSGoogle Scholar
  39. 39.
    Gambini, R., Pullin, J.: Found. Phys. 37, 1074–1092 (2007) zbMATHCrossRefMathSciNetADSGoogle Scholar
  40. 40.
    Hartle, J.: In: Bowik, N.J., Gursey, F. (ed.) High Energy Physics, 1985, Proceedings of the Yale Summer School. World Scientific, Singapore (1985) Google Scholar
  41. 41.
    Hillery, M., O’Connell, R., Scully, M., Wigner, E.: Phys. Rep. 106, 121 (1984) CrossRefMathSciNetADSGoogle Scholar
  42. 42.
    Iguri, S., Castagnino, M.: Int. J. Theor. Phys. 38, 143 (1999) zbMATHCrossRefMathSciNetGoogle Scholar
  43. 43.
    Iguri, S., Castagnino, M.: J. Math. Phys. 49, 033510 (2008) CrossRefMathSciNetADSGoogle Scholar
  44. 44.
    Joos, E.: Phys. Lett. A 116, 6 (1986) CrossRefMathSciNetADSGoogle Scholar
  45. 45.
    Kiefer, C.: Class. Quantum Gravity 4, 1369 (1987) CrossRefMathSciNetADSGoogle Scholar
  46. 46.
    Kiefer, C., Lesgourgues, J., Polarski, D., Starobinsky, A.A.: Class. Quantum Gravity 15, L67 (1998) zbMATHCrossRefADSGoogle Scholar
  47. 47.
    Kiefer, C., Polarski, D.: Ann. Phys. (Leipzig) 7, 137 (1998) zbMATHADSGoogle Scholar
  48. 48.
    Kiefer, C., Polarski, D., Starobinsky, A.A.: Int. J. Mod. Phys. D 7, 455 (1998) zbMATHCrossRefADSGoogle Scholar
  49. 49.
    Kuyatt, C.E., Simpson, J.A., Mielczarek, S.R.: Phys. Rev. A 138, 385 (1965) CrossRefADSGoogle Scholar
  50. 50.
    Laura, R., Castagnino, M.: Phys. Rev. A 57, 4140 (1998) CrossRefMathSciNetADSGoogle Scholar
  51. 51.
    Laura, R., Castagnino, M.: Phys. Rev. E 57, 3948 (1998) CrossRefMathSciNetADSGoogle Scholar
  52. 52.
    Lombardo, F., Mazzitelli, D.: Phys. Rev. D 53, 2001-2011 (1996) CrossRefADSGoogle Scholar
  53. 53.
    Milbur, G.: Phys. Rev. A 44, 5401 (1991) CrossRefADSGoogle Scholar
  54. 54.
    Parker, L.: Phys. Rev. 183, 1057 (1969) zbMATHCrossRefADSGoogle Scholar
  55. 55.
    Paz, J.P., Zurek, W.H.: Environment-induced decoherence and transition from quantum to classical. arXiv:quant-ph/0010011v1 (2000)
  56. 56.
    Penrose, R.: Shadows of Mind. Oxford University Press, Oxford (1995) zbMATHGoogle Scholar
  57. 57.
    Price, H.: Time’s Arrow and Archimides’ Point. Oxford University Press, Oxford (1984) Google Scholar
  58. 58.
    Prigogine, I.: Non-Equilibrium Statistical Mechanics. Wiley, New York (1962) zbMATHGoogle Scholar
  59. 59.
    Sicardi Schifino, A., et al.: quant-ph/0308162 (2003)
  60. 60.
    Treves, A.: Topological Vector Spaces, Distributions and Kernels. Academic Press, New York (1967) zbMATHGoogle Scholar
  61. 61.
    van Hove, L.: Physica 21, 901 (1955) zbMATHCrossRefMathSciNetADSGoogle Scholar
  62. 62.
    Zee, H.D.: Phys. Lett. A 116, 9 (1986) CrossRefMathSciNetADSGoogle Scholar
  63. 63.
    Zeh, H.D.: Found. Phys. 1, 69 (1970) CrossRefADSGoogle Scholar
  64. 64.
    Zeh, H.D.: On the irreversibility of time and observation in quantum theory. In: d’Espagnat, B. (ed.) Foundations of Quantum Mechanics. Academic Press, New York (1971) Google Scholar
  65. 65.
    Zeh, H.D.: Found. Phys. 3, 109 (1973) CrossRefADSGoogle Scholar
  66. 66.
    Zurek, W.H.: Phys. Rev. D 24, 1516 (1981) CrossRefMathSciNetADSGoogle Scholar
  67. 67.
    Zurek, W.H.: Phys. Rev. D 26, 1962 (1982) CrossRefMathSciNetADSGoogle Scholar
  68. 68.
    Zurek, W.H.: Phys. Today 44, 36 (1991) CrossRefGoogle Scholar
  69. 69.
    Zurek, W.H.: Prog Theor. Phys. 89, 281 (1993) CrossRefMathSciNetADSGoogle Scholar
  70. 70.
    Zurek, W.H.: Philos. Trans. R. Soc. Lond. A 356, 1793 (1998) CrossRefMathSciNetADSGoogle Scholar
  71. 71.
    Zurek, W.H.: LANL quant-ph/9805065 (1998)

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Institute of Astronomy and Physics of SpaceBuenos AiresArgentina
  2. 2.Institutes of Physics of Rosario and Astronomy and Physics of SpaceBuenos AiresArgentina

Personalised recommendations